
XY-pic Reference Manual

Kristoffer H. Rose
〈kris@diku.dk〉×

Ross Moore
〈ross@mpce.mq.edu.au〉†

Version 2.12/3β‡ 〈1994/10/25〉

Abstract

This manual summarises the capabilities of the XY-pic
package for typesetting graphs and diagrams in TEX.
A characteristic of XY-pic is that it is build around

a kernel drawing language which is a concise notation
for general graphics, e.g.,

A

B07162534❥❥❥❥❥❥❥❥❥
G' 55

was drawn by the XY-pic kernel code

\xy (3,0)*{A} ; (20,6)*+{B}*\cir{} **\dir{-}

? *_!/3pt/\dir{)} *_!/7pt/\dir{:}

?>* \dir{>} \endxy

It is an object-oriented graphic language in the most
literal sense: ‘objects’ in the picture have ‘methods’
describing how they typeset, stretch, etc., however, the
syntax is rather terse.
Particular applications make use of extensions that

enhance the graphic capabilities of the kernel to handle
such diagrams as

Roundgfed`abc_^]\XYZ[
Square

Bend

%%

which was typeset by

\xy *[o]=<40pt>\hbox{Round}="o"*\frm{oo}

+<5em,-5em>@+,

×DIKU (Computer Science dept.), University of Copenhagen,
Universitetsparken 1, DK–2100 København Ø, Denmark.

†MPCE (Mathematics dept.), Macquarie University, North
Ryde, Sydney, Australia NSW 2109.

‡The “/3β” in the version is meant to indicate that this is
a β-test version of XY-pic version 3 currently under development
by the authors, thus this manual contains a few ‘Bug’ and ‘To
Do’ paragraphs describing facilities not yet fully implemented.

Partial funding for this project has been provided by a Mac-
quarie University Research Grant (MURG), by the Australian
Research Council (ARC), and through a research agreement with
the Digital Equipment Corporation (DEC).

(46,11)*+\hbox{Square}="s" *\frm{-,}

-<5em,-5em>@+,

"o";"s" **i\crvs{},

?*+\hbox{Bend}="b"*\frm{.} ?>*\dir{>},

"o";"s"."b" **\crvs{-},

"o"."b";"s" **\crvs{-}

\endxy

using the ‘curve’ and ‘frame’ extensions.

All this is made accesible through features that pro-
vide convenient notation such that users can enter spe-
cial classes of diagrams in an intuitive form, e.g., the
diagram

Z

X

��
f

Y //g

X ×Z Y //
p

��
q

U

&&

x

y

$$
(x,y)

■
■

■
■

was typeset using the ‘graph’ features by the XY-pic
input lines

\xygraph{~{(1.5,0):(0,.7)::}

[]Z ([u]X :_f ? , [l]Y :^g ?)

[ul]{X \times_Z Y}="xy"

(? :_p "X" , ? :^q "Y")

[ul]U (? :@/^.5pc/ ^x "X" ,

? :@/_.5pc/ _y "Y" ,

? :@{-->} |{(x,y)} "xy") }

We will not describe the combination of features in
this manual: refer to the User’s Guide [14] for a tutorial
on how diagrams like the above can be typeset.

The current implementation is programmed com-
pletely within “standard TEX and METAFONT”, i.e.,
using TEX macros (no \specials) and fonts de-
signed using METAFONT. Optionally a special ‘back-
end’ makes it possible to produce DVI files with ‘spe-
cials’ for PostScript1 drivers.

1PostScript is a trademark of Adobe, Inc.

1

Contents

I The Kernel 2

1 The XY-pic implementation 3
1.1 Loading XY-pic 3
1.2 Logo, version, and messages 4
1.3 Fonts . 4
1.4 Allocations 4

2 Picture basics 4
2.1 Positions 4
2.2 Objects 5
2.3 Connections 5
2.4 Decorations 5
2.5 The XY-pic state 5

3 Positions 5

4 Objects 9

5 Decorations 12

6 Kernel object library 13
6.1 Directionals 13
6.2 Circle segments 15
6.3 Text . 15

7 XY-pic option interface 15

II Extensions 16

8 Curve and Spline extension 16

9 Frame and Bracket extension 19
9.1 Frames 19
9.2 Brackets 19

10 Computer Modern tip extension 21

11 Line styles extension 21

12 Rotate and Scale extension 22

13 Colour extension 23

III Features 23

14 All features 24

15 Dummy option 24

16 Arrow and Path feature 24
16.1 Paths 24
16.2 Arrows 28

17 Two-cell feature 30
17.1 Typesetting 2-cells in Diagrams 30
17.2 Standard Options 30
17.3 Nudging 31
17.4 Extra Options 31
17.5 2-cells in general XY-pictures 34

18 Matrix feature 34
18.1 XY-matrices 34
18.2 New coordinate formats 35
18.3 Spacing and rotation 35
18.4 Entries 36

19 Graph Combinator feature 36

20 Polygon feature 38

21 Version 2 Compatibility feature 41
21.1 Unsupported incompatibilities 41
21.2 Obsolete kernel features 41
21.3 Obsolete extensions & features 42
21.4 Obsolete loading 43
21.5 Compiling v2-diagrams 43

IV Backends 43

22 PostScript backend 43
22.1 Choosing the DVI-driver 44
22.2 Why use PostScript. 45
22.3 PostScript escape 46
22.4 Extensions 46

Answers to all exercises 46

References 50

List of Figures

1 〈pos〉itions. 6
2 Example 〈place〉s 9
3 〈object〉s. 11
4 〈decor〉ations. 13
5 Kernel library 〈dir〉ectionals 14
6 〈cir〉cles. 16
7 Syntax for curves. 18
8 Plain 〈frame〉s. 20
9 Bracket 〈frame〉s. 20
10 Computer Modern 〈dir〉ectionals 22
11 Rotations, scalings and flips 24
12 〈path〉s 25
13 〈arrow〉s. 28
14 Pasting diagram. 31
15 〈twocell〉s 32
16 〈graph〉s 37

2

Part I

The Kernel

Vers. 2.12 by Kristoffer H. Rose 〈kris@diku.dk〉
After giving an overview of the XY-pic environment
in §1 we document the basic concepts of XY-picture
construction in §2, including the maintained ‘graphic
state’. The following sections give the precise syntax
rules of the main XY-pic constructions: the position
language in §3, the object constructions in §4, and the
picture ‘decorations’ in §5. §6 presents the kernel reper-
toire of objects for use in pictures; §7 documents the
interface to XY-pic options like the standard ‘feature’
and ‘extension’ options.
Details of the implementation are not discussed in

this part but in the complete TEXnical documenta-
tion [11].

Notation

We will give descriptions of the syntax of pictures as
BNF2 rules; in explanations we will use upper case let-
ters like X and Y for 〈dimen〉sions and lower case like
x and y for 〈factor〉s.

1 The XY-pic implementation

This section briefly discusses the various aspects of the
presentXY-pic kernel implementation of which the user
should be aware in order to experiment with it.

1.1 Loading XY-pic

XY-pic is careful to set up its own environment in order
to function with a large variety of formats. For most
formats a single line with the command

\input xy

in the preamble of a document file should load the ker-
nel (see ‘integration with standard formats’ below for
variations possible with certain formats, in particular
LATEX [8]).
The rest of this section describes things you must

consider if you need to use XY-pic together with other

2BNF is the notation for “meta-linguistic formulae” first used
in [9] to describe the syntax of the Algol programming language.
We use it with the conventions of the TEXbook [5]: ‘−→’ is read
“is defined to be”, ‘ | ’ is read “or”, and ‘〈empty〉’ denotes “noth-
ing”; furthermore, ‘〈id〉’ denotes anything that expands into a
sequence of TEX character tokens, ‘〈dimen〉’ and ‘〈factor〉’ de-
note decimal numbers with, respective without, a dimension unit
(like pt and mm), 〈number〉 denotes possibly signed integers, and
〈text〉 denotes TEX text to be typeset in the appropriate mode.
We have chosen to annotate the syntax with brief explanations
of the ‘action’ associated with each rule; here ‘←’ should be read
‘is copied from’.

macro packages, style options, or formats. The less
your environment deviates from plain TEX the easier
it should be. Consult the TEXnical documentation [11]
for the exact requirements for other definitions to co-
exist with XY-pic.

Privacy: XY-pic will warn about control sequences it
redefines—thus you can be sure that there are no con-
flicts between XY-pic-defined control sequences, those
of your format, and other macros, provided you load
XY-pic last and get no warning messages like

XY-pic Warning: ‘ . . . ’ redefined.

In general the XY-pic kernel will check all control se-
quences it redefines except that (1) generic temporaries
like \next are not checked, (2) predefined font iden-
tifiers (see §1.3) are assumed intentionally preloaded,
and (3) some of the more exotic control sequence names
used internally (like \dir{-}) are only checked to be
different from \relax.

Category codes: Unfortunately the situation is
complicated by the flexibility of TEX’s input format.
The culprit is the ‘category code’ concept of TEX
(cf. [5, p.37]): when loaded XY-pic requires the charac-
ters \{}% (the first is a space) to have their standard
meaning and all other printable characters to have the
same category as when XY-pic will be used—in particu-
lar this means that (1) you should surround the load-
ing of XY-pic with \makeatother . . . \makeatletter

when loading it from within a LATEX package, and that
(2) XY-pic should be loaded after files that change cate-
gory codes (like the german.sty that makes " active).

Integration with standard formats The inte-
gration with various formats is handled by the
xyidioms.tex file and the integration as a LATEX [8]
package by xy.sty:

xyidioms.doc: This included file provides com-
mon idioms whose definition depends on the used for-
mat such thatXY-pic can use predefined dimension reg-
isters etc. and yet still be independent of the format
under which it is used. The current version (2.12) han-
dles plain TEX (version 2 and 3 [5]), AMS-TEX (version
2.0 and 2.1 [15]), LATEX (version 2.09 [7] and 2ε [8]),
AMS-LATEX (version 1.0, 1.1 [1], and 1.2), and eplain
(version 2.6 [2])3.

xy.sty: If you use LATEX then this file makes it pos-
sible to loadXY-pic as a ‘package’ using the LATEX2ε [8]

3Although there is a name conflict between the ‘v2’ feature
and eplain that both define \arrow.

3

\usepackage command:

\usepackage [〈option〉,. . .] {xy}

where the 〈option〉s will be interpreted as if passed to
\xyoption (cf. §7); furthermore options that require
special activation will also be activated when loaded
this way (e.g., including cmtip in the 〈option〉 list will
not only perform \xyoption {cmtip} but also \Use-
ComputerModernTips).
Driver package options (cf. [3, table 11.2, p.317]) will

invoke the appropriate backend (cf. §22).
The file also works as a LATEX 2.09 [7] ‘style option’

although you will have to load options with the XY-pic
mechanism.

1.2 Logo, version, and messages

Loading XY-pic prints a banner containing the version
and author of the kernel; small progress messages are
printed when each major division of the kernel has been
loaded. Any options loaded will announce themself in
a similar fashion.
If you refer to XY-pic in your written text (please

do ©̈⌣) then you can use the command \Xy-pic to type-
set the “XY-pic” logo. The version of the kernel is type-
set by \xyversion and the release date by \xydate (as
found in the banner). By the way, the XY-pic name4

originates from the fact that the first version was little
more than support for (x, y) coordinates in a config-
urable coordinate system where the main idea was that
all operations could be specified in a manner indepen-
dent of the orientation of the coordinates. This prop-
erty has been maintained except that now the package
allows explicit absolute orientation as well.
Messages that start with “XY-pic Warning” are

indications that something needs your attention; an
“XY-pic Error” will stop TEX because XY-pic does not
know how to proceed.

1.3 Fonts

The XY-pic kernel implementation makes its drawings
using five specially designed fonts:

Font Characters Default
\xydashfont dashes xydash10

\xyatipfont arrow tips, upper half xyatip10

\xybtipfont arrow tips, lower half xybtip10

\xybsqlfont quarter circles for xybsql10

hooks and squiggles
\xycircfont 1/8 circle segments xycirc10

The first four contain variations of characters in a large
number of directions, the last contains 1/8 circle seg-
ments.

4No description of a TEX program is complete without an
explanation of its name.

Note: The default fonts are not part of the XY-pic
kernel specification: they just set a standard for what
drawing capabilities should at least be required by
an XY-pic implementation. Implementations exploit-
ing capabilitites of particular output devices are in
use. Hence the fonts are only loaded by XY-pic if the
control sequence names are undefined—this is used to
preload them at different sizes or prevent them from
being loaded at all.

1.4 Allocations

One final thing that you must be aware of is the fact
that XY-pic allocates a significant number of dimension
registers and some counters, token registers, and box
registers, in order to represent the state and do com-
putations. The XY-pic v.2.12 kernel allocates 6 coun-
ters, 27 dimensions, 2 box registers, 3 token registers,
1 read channel, and 1 write channel (when running
under plain TEX; under LATEX and AMS-TEX slightly
less is allocated because the provided temporaries are
used). Options may allocate further registers.

2 Picture basics

The basic concepts involved when constructing XY-
pictures are positions and objects, and how they con-
stitute a state used by the graphic engine.
The general structure of an XY-picture is as follows:

\xy 〈pos〉 〈decor〉 \endxy

builds a box with an XY-picture (LATEX users may sub-
stitute \begin{xy} . . . \end{xy} if they prefer). 〈pos〉
and 〈decor〉 are components of the special ‘graphic lan-
guage’ which XY-pictures are specified in. We explain
the language components in general terms in this § and
in more depth in the following §§.

2.1 Positions

All positions may be written <X,Y > where X is the
TEX dimension distance right and Y the distance up

from the zero position 0 of the XY-picture (0 has co-
ordinates <0mm,0mm>, of course). The zero position
of the XY-picture determines the box produced by the
\xy. . . \endxy command together with the four param-
eters Xmin, Xmax, Ymin, and Ymax set such that all the
objects in the picture are ‘contained’ in the following
rectangle:

◦

0TEX reference point

•oo
Xmin

//
Xmax

��
Ymin

OO

Ymax

4

where the distances follow the “up and right > 0” prin-
ciple, e.g., the indicated TEX reference point has coor-
dinates <Xmin,0pt> within the XY-picture. The zero
position does not have to be contained in the picture,
but Xmin ≤ Xmax ∧ Ymin ≤ Ymax always holds. The
possible positions are described in detail in §3.

2.2 Objects

The simplest form of putting things into the picture
is to ‘drop’ an object at a position. An object is like
a TEX box except that it has a general Edge around
its reference point—in particular this has the extents

(i.e., it is always contained within) the dimensions L,
R, U , and D away from the reference point in each of
the four directions left, right, up, and down. Objects
are encoded in TEX boxes using the convention that
the TEX reference point of an object is at its left edge,
thus shifted <−L,0pt> from the center—so a TEX box
may be said to be a rectangular object with L = 0pt.
Here is an example:

◦L R
D

U

TEX reference point

•

The object shown has a rectangle edge but others are
available even though the kernel only supports rectan-
gle and circle edges. It is also possible to use entire
XY-pictures as objects with a rectangle edge, 0 as the
reference point, L = −Xmin, R = Xmax, D = −Ymin,
and U = Ymax. The commands for objects are de-
scribed in §4.

2.3 Connections

Besides having the ability to be dropped at a position
in a picture, all objects may be used to connect the
two current objects of the state, i.e., p and c. For most
objects this is done by ‘filling’ the straight line between
the centers with as many copies as will fit between the
objects:

p(/).*-+,
c❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

The ways the various objects connect are described
along with the objects.

2.4 Decorations

When the \xy command reaches something that can
not be interpreted as a continuation of the position be-
ing read, then it is expected to be a decoration, i.e., in a
restricted set of TEX commands which add to pictures.

Most such commands are provided by the various user
options (cf. §7)—only a few are provided within the
kernel to facilitate programming of such options (and
user macros) as described in §5.

2.5 The XY-pic state

Finally we summarise the user-accessible parts of the
XY-picture state of two positions together with the last
object associated with each: the previous , p, is the
position <Xp, Yp> with the object Lp, Rp, Dp, Up,
Edgep, and the current , c, is the position <Xc, Yc>

with the object Lc, Rc, Dc, Uc, Edgec.
Furthermore, XY-pic has a configurable cartesian

coordinate system described by an origin position
<Xorigin, Yorigin> and two base vectors <Xxbase,

Yxbase> and <Xybase, Yybase>, and accessed by the usual
notation using parenthesis:

(x,y) = < Xorigin + x×Xxbase + y ×Xybase ,

Yorigin + x× Yxbase + y × Yybase >

This is explained in full when we show how to set the
base in note 3d of §3.
Finally typesetting a connection will setup a “place-

ment state” for referring to positions on the connection
that is accessed through a special ? position construc-
tion; this is also discussed in detail in §3.
The XY-pic state consists of all these parameters to-

gether. They are initialised to zero except for Xxbase =
Yybase = 1mm. The dimension parameters are directly
available as TEX \dimen registers with the obvious
names: \Xmin, \Xmax, \Ymin, and \Ymax; \Xp, \Yp \Dp,
\Up, \Lp, and \Rp; \Xc, \Yc \Dc, \Uc, \Lc, and \Rc;
\Xorigin, \Yorigin, \Xxbase, \Yxbase, \Xybase, and
\Yybase.
The edges are not directly available (but see the tech-

nical documentation for how to access them).

3 Positions

A 〈pos〉ition is a way of specifying locations as well
as dropping objects at them and decorating them—in
fact any aspect of the XY-pic state can be changed by a
〈pos〉 but most will just change the coordinates and/or
shape of c.
All possible positions are shown in figure 1 with ex-

planatory notes below.

Exercise 1: Which of the positions 0, <0pt,0pt>,
<0pt>, (0,0), and /0pt/ is different from the others?

Notes

3a. When doing arithmetic with + and - then the re-
sulting object inherits the size of the 〈coord〉, i.e.,

5

Syntax Action

〈pos〉 −→ 〈coord〉 c← 〈coord〉
| 〈pos〉 + 〈coord〉 c← 〈pos〉+ 〈coord〉3a
| 〈pos〉 - 〈coord〉 c← 〈pos〉 − 〈coord〉3a
| 〈pos〉 ! 〈coord〉 c← 〈pos〉 then skew3b c by 〈coord〉
| 〈pos〉 . 〈coord〉 c← 〈pos〉 but also covering3c 〈coord〉
| 〈pos〉 , 〈coord〉 c← 〈pos〉 then c← 〈coord〉
| 〈pos〉 ; 〈coord〉 c← 〈pos〉, swap p and c, c← 〈coord〉
| 〈pos〉 : 〈coord〉 c← 〈pos〉, set base3d, c← 〈coord〉
| 〈pos〉 :: 〈coord〉 c← 〈pos〉, ybase ← c− origin , c← 〈coord〉
| 〈pos〉 * 〈object〉 c← 〈pos〉, drop3f 〈object〉
| 〈pos〉 ** 〈object〉 c← 〈pos〉, connect3g using 〈object〉
| 〈pos〉 ? 〈place〉 c← 〈pos〉, c← 〈place〉3h
| 〈pos〉 〈stacking〉 c← 〈pos〉, do 〈stacking〉
| 〈pos〉 〈saving〉 c← 〈pos〉, do 〈saving〉

〈coord〉 −→ 〈vector〉 〈pos〉 is 〈vector〉 with zero size
| 〈empty〉 | c reuse last c (do nothing)
| p p

| x | y axis intersection3i with pc

| s〈digit〉 | s{〈number〉} stack3m position 〈digit〉 or 〈number〉 below the top

| "〈id〉" restore what was saved3o as 〈id〉 earlier
| { 〈pos〉 〈decor〉 } the c resulting from interpreting the group3j

〈vector〉 −→ 0 zero
| < 〈dimen〉 , 〈dimen〉 > absolute
| < 〈dimen〉 > absolute with equal dimensions

| (〈factor〉 , 〈factor〉) in current base3d

| a (〈number〉) angle in current base3e

| 〈corner〉 from reference point to 〈corner〉 of c
| 〈corner〉 (〈factor〉) The 〈corner〉 multiplied with 〈factor〉
| / 〈direction〉 〈dimen〉 / vector 〈dimen〉 in 〈direction〉3k

〈corner〉 −→ L | R | D | U offset3l to left, right, down, up side

| CL | CR | CD | CU | C offset3l to center of side, true center

| LD | RD | LU | RU offset3l to actual left/down, . . . corner

| E | P offset3l to nearest/proportional edge point to p

〈place〉 −→ < 〈place〉 shave3h (0) to edge of p, f ← 0

| > 〈place〉 shave3h (1) to edge of c, f ← 1

| (〈factor〉) 〈place〉 f ← 〈factor〉
| 〈slide〉 pick place3h and apply 〈slide〉

〈slide〉 −→ / 〈dimen〉 / slide3h 〈dimen〉 further along connection
| 〈empty〉 no slide

〈stacking〉 −→ @i | @(| @) init, enter, leave stack3m

| @+ 〈coord〉 | @- 〈coord〉 push 〈coord〉; c← 〈coord〉 and pop (on stack3m)

| @@ 〈coord〉 do 〈coord〉 for every stack element3n

〈saving〉 −→ = "〈id〉" save3o c as "〈id〉"
| =〈code〉 "〈id〉" define macro3p "〈id〉"

Figure 1: 〈pos〉itions.

6

the right argument—this will be zero if the 〈coord〉
is a 〈vector〉.

Exercise 2: How do you set c to an object the
same size as the saved object "ob" but moved
<X,Y >?

3b. Skewing using ! just means that the reference
point of c is moved with as little change to the
shape of the object as possible, i.e., the edge of c
will remain in the same location except that it will
grow larger to avoid moving the reference point
outside c.

Exercise 3: What does the 〈pos〉 . . . !R-L do?

Bug: The result of ! is always a rectangle cur-
rently.

3c. A 〈pos〉 covers another if it is a rectangle with size
sufficiently large that the other is “underneath”.
The . operation “extends” a 〈pos〉 to cover an ad-
ditional one—the reference point of c is not moved
but the shape is changed to a rectangle such that
the entire p object is covered.

Note: non-rectangular objects are first “trans-
lated” into a rectangle by using a diagonal through
the object as the diagonal of the rectangle.

3d. The operations : and :: set the base used for
〈coord〉inates on the form (x,y). The : operation
will set <Xorigin, Yorigin> to p, <Xxbase, Yxbase>

to c − origin , and <Xybase, Yybase> to <−Yxbase,

Xxbase> (this ensures that it is a usual square co-
ordinate system). The :: operation may then be
used afterwards to make nonsqare bases by just
setting ybase to c− origin . Here are two examples
0;<1cm,0cm>: will set the coordinate system

◦ //

OO

origin
xbase

ybase × (1,1)

and <1cm,.5cm>; <2cm,1.5cm>: <1cm,1cm>::

will define

◦

❄
❄

❄
❄

❄

__
ybase
before
::

⑧⑧⑧⑧⑧⑧⑧⑧⑧

??

OO

origin

xbase
ybase

× (1,1)

where in each case the ◦ is at 0, the base vectors
have been drawn, and the × is at (1,1).

When working with vectors these two special
〈factor〉s are particularly useful:

\halfroottwo 0.70710678≈
√
2/2

\halfrootthree 0.86602540≈
√
3/2

3e. An angle α in XY-pic is the same as the coordi-
nate pair (cosα, sinα) where α must be an inte-
ger interpreted as a number of degrees. Thus the
〈vector〉 a(0) is the same as (1,0) and a(90) as
(0,1), etc.

3f. To drop an 〈object〉 at c with * means to actu-
ally physically typeset it in the picture with ref-
erence position at c—how this is done depends on
the 〈object〉 in question and is described in detail
in §4. The intuition with a drop is to do some-
thing that typesets something a <Xc,Yc> and sets
the edge of c accordingly.

3g. The connect operation ** will first compute a num-
ber of internal parameters describing the direction
from p to c and then typesets a connection filled
with copies of the 〈object〉 as illustrated in §2.3.
The exact details of the connection depend on the
actual 〈object〉 and are described in general in §4.
The intuition with a connection is that it is some-
thing that typesets something connecting p and c
sets the ? 〈pos〉 operator up accordingly.

3h. Using ? will “pick a place” along the most recent
connection typeset with **. What exactly this
means is determined by the object that was used
for the connection and by the modifiers described
in general terms here.

The “shave” modifiers in a 〈place〉, < and >, change
the default 〈factor〉, f , and how it is used, by
‘moving’ the positions that correspond to (0) and
(1) (respectively): These are initially set equal
to p and c, but shaving will move them to the
point on the edge of p and c where the connection
“leaves/enters” them, and change the default f as
indicated. When one end has already been shaved
thus then subsequent shaves will correspond to
sliding the appropriate position(s) a TEX \jot

(usually equal to 3pt) further towards the other
end of the connection (and past it). Finally the
pick action will pick the position located the frac-
tion f of the way from (0) to (1) where f = 0.5

if it was not set (by <, >, or explicitly).

Finally, the 〈slide〉 will move the position a dimen-
sion further along the connection at the picked po-
sition. For straight connections (the only ones ker-
nel XY-pic provides) this is the same as adding a
vector in the tangent direction, i.e., ? . . . /A/ is
the same as ? . . . +/A/.

7

All this is probably best illustrated with some ex-
amples: each ⊗ in figure 2 is typeset by a sequence
of the form p; c **\dir{.} ?〈place〉 *{\oplus}
where we indicate the ?〈place〉 in each case.

3i. The positions denoted by the axis intersection

〈coord〉inates x and y are the points where the line
through p and c intersects with each axis. These
are probably best illustrated by the following ex-
ample where they are shown for a coordinate sys-
tem and a p, c pair:

origin

xbase♦♦♦♦♦♦♦

77ybase ❄❄❄❄❄
__

◦p

◦c

x
•

y
•

Exercise 4: Given predefined points A, B, C,
and D (stored as objects "A", "B", "C", and "D"),
write a 〈coord〉 specification that will return the
point where the lines AB and CD cross as the
point marked with a large circle here:

��������A

��������B �������� C�������� D
��������

3j. A 〈pos〉 〈decor〉 grouped in {}-braces is interpreted
in a local scope in the sense that any p and base

built within it are forgotten afterwards. Remark:
Only p and base are restored—it is not a TEX
group.

Exercise 5: What is the effect of the
〈coord〉inate “{;}”?

3k. The vector /Z/, where Z is a 〈dimen〉sion, is the
same as the vector <Z cosα,Z sinα> where α is
the angle of the last direction set by a connection
(**) or subsequent placement (?) position.

It is possible to give a 〈direction〉 as described in
the next section (figure 3 and note 4k in particular)
that will then be used to set the value of α.

3l. A 〈corner〉 is an offset from the current <Xc,Yc>

position to a specific position on the edge of the
c object (the two-letter ones may be given in any

combination):

cL // Roo

D

OO

U

��

LD

②②②
<<

RD
❱❱❱kk

LU
✶✶✶
��

RU
rrryy

CL ❖❖❖ '' CR❞❞❞rr

DC

❊❊❊bb

UC

✌✌✌
��

C
♦♦♦ww

P
❞❞❞ 22

p

❥❥❥❥❥❥ E
❥❥❥ 55

The ‘proportional’ point P is computed in a com-
plex way to make the object look as much ‘away
from p’ as possible.

Finally, a following (f) suffix will multiply the off-
set vector by the 〈factor〉 f .

Exercise 6: What is the difference between the
〈pos〉itions c?< and c+E?

Exercise 7: What does

\xy *=<3cm,1cm>\txt{Box}*\frm{-}

!U!R(.5) *\frm{..}*{\bullet} \endxy

typeset? Hint : \frm is defined by the frame exten-
sion and just typesets a frame of the kind indicated
by the argument.

Bug: Currently only the single-letter corners (L,
R, D, U, C, E, and P) will work for any shape—the
others silently assume that the shape is rectangu-
lar.

3m. The stack is a special construction useful for stor-
ing a sequence of 〈pos〉itions. @i initialises, i.e.,
clears the stack such that it contains no positions,
@+ ‘pushes’ c onto it, i.e., adds on the ‘top’ of the
stack, increasing the ‘depth’ by one, and @- ‘pops’
the top element off the stack, decreasing the depth
by one. It is an error to pop when the stack is
empty.

The special 〈coord〉inates sn, where n is either a
single digit or a positive integer in {}s, refer to the
n’th position below the top, i.e., s0 is the position
on the top, s1 the one below that, etc.

Exercise 8: Assume the positions A, B, C, and
D are defined. What does the stack contain after
the 〈pos〉ition @i, A@+, B@+, @-, C, D@+ ?

Furthermore, @(‘hides’ the current stack and cre-
ates a fresh stack that can be used as above and
once it has served its purpose @) will purge it and
reestablish the saved stack (issuing a warning mes-
sage if the purged stack is non-empty).

8

GFED@ABC76540123p is circular:

c is a
square
text!

❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘⊕

?(0)

rrrrrr

99

⊕

?(1)

rrrrrr

99

⊕
?

rrrrrr

99

⊕

?(.7)

rrrrrr

99

⊕
?<>(.5)

��⊕
?<>(.2)(.5)

rrrrrr
yy

⊕
?<

rrrrrr
yy⊕

?<<<

rrrrrr

99
⊕

?<<</1cm/

rrrrrr

99
⊕

?<(0)

��

⊕
?>

rrrrrr
yy⊕

?>>>>
��

⊕
?<>(.7)

rrrrrr
yy⊕

?>(.7)

��

Figure 2: Example 〈place〉s

3n. To ‘do 〈coord〉 for every stack element’ means to
set c to all the elements of the stack, from the bot-
tom and up, and for each interpret the 〈coord〉.
Thus the first interpretation has c set to the bot-
tom element of the stack and the last has c set
to s0. If the stack is empty, the 〈coord〉 is not
interpreted at all.

This can be used to repeat a particular 〈coord〉 for
several points:

\xy

@i @+(0,-10) @+(10,3) @+(20,-5)

@@{*{P}}

\endxy

will typeset

P

P

P

Exercise 9: How would you change the above to
connect the points as shown below?

❣❣❣❣❣❣❣❣❣❣❣❣

✝✝✝✝✝✝✝✝✝✝

❊❊❊❊❊❊❊❊

3o. It is possible to define new 〈coord〉inates on the
form "〈id〉" by saving the current c using the
. . . ="〈id〉" 〈pos〉ition form. Subsequent uses of
"〈id〉" will then reestablish the c at the time of
the saving.

Using a "〈id〉" that was never defined is an error,
however, saving into a name that was previously
defined just replaces the definition, i.e., "〈id〉" al-
ways refers to the last thing saved with that 〈id〉.

Note: There is no distinction between 〈id〉s used
for saved coordinates and for macros and described
in the next note.

3p. The general form, =〈code〉"〈id〉" can be used to
save various things:

〈code〉 effect

: "〈id〉" restores current base
〈coord〉 "〈id〉" interprets 〈coord〉

The first form defines "〈id〉" to be a macro that
restores the current base.

The second does not depend on the state at the
time of definition at all; it is a macro definition.
You can pass parameters to such a macro by letting
it use coordinates named "1", "2", etc., and then
use ="1", ="2", etc., just before every use of it
to set the actual values of these. Note: it is not
possible to use a 〈coord〉 of the form "〈id〉" directly:
write it as {"〈id〉"}.

Exercise 10: Write a macro "dbl" to double the
size of the current c object, e.g., changing it from
the dotted to the dashed outline in this figure:

+

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

4 Objects

Objects are the entities that are manipulated with the
* and ** 〈pos〉 operations above to actually get some
output inXY-pictures. As for 〈pos〉itions the operations

9

are interpreted strictly from left to right, however, the
actual object is built before all the 〈modifier〉s take
effect. The syntax of objects is given in figure 3 with
references to the notes below.

To Do: Explain how strange TEX error messages
(first of all box expected) can result from incomplete
〈object〉 specifications.

Notes

4a. A default 〈object〉 is built using \objectbox

{〈text〉}. \objectbox is initially defined as

\def\objectbox#1{%

\hbox{$\objectstyle{#1}$}}

\let\objectstyle=\displaystyle

but may be redefined by options or the user.
The 〈text〉 should thus be in the mode required
by the \objectbox command—with the default
\objectbox it should be in math mode.

4b. An 〈object〉 built from a TEX box with dimen-
sions w × (h + d) will have Lc = Rc = w/2,
Hc = Dc = (h + d)/2, thus initially be equipped
with the adjustment !C (see note 4f). In particular:
in order to get the reference point on the (center
of) the base line of the original 〈TEX box〉 then
you should use the 〈modifier〉 !; to get the refer-
ence point identical to the TEX reference point use
the modifier !!L.

TEXnical remark: Any macro that expands to
something that starts with a 〈box〉 may be used
as a 〈TEX box〉 here.

4c. Takes an object and constructs it, building a box;
it is then processed according to the preceeding
modifiers. This form makes it possible to use any
〈object〉 as a TEX box (even outside ofXY-pictures)
because a finished object is always also a box.

4d. Several 〈object〉s can be combined into a single ob-
ject using the special command \compositewith a
list of the desired objects separated with *s as the
argument. The resulting box (and object) is the
least rectangle enclosing all the included objects.

4e. Take an entire XY-picture and wrap it up as a box
as described in §2.1. Makes nesting of XY-pictures
possible: the inner picture will have its own zero
point which will be its reference point in the outer
picture when it is placed there.

4f. An object is shifted a 〈vector〉 by moving the point
inside it which will be used as the reference point.
This effectively pushes the object the same amount
in the opposite direction.

Exercise 11: What is the difference between the
〈pos〉itions 0*{a}!DR and 0*!DR{a}?

4g. A 〈size〉 is a pair <W,H> of the width and height
of a rectangle. When given as a 〈vector〉 these are
just the vector coordinates, i.e., the 〈vector〉 starts
in the lower left corner and ends in the upper right
corner. The posible 〈add op〉erations that can be
performed are described in the following table.

〈add op〉 description
+ grow
- shrink
= set to
+= grow to at least
-= shrink to at most

In each case the 〈vector〉 may be omitted which
invokes the “default size” for the particular 〈add
op〉:

〈add op〉 default
+ +<2× objectmargin>

- -<2× objectmargin>

= =<objectwidth,objectheight>

+= +=<max(Lc +Rc, Dc + Uc)>
-= -=<min(Lc +Rc, Dc + Uc)>

The defaults for the first three are set with the
commands

\objectmargin 〈add op〉 {〈dimen〉}
\objectwidth 〈add op〉 {〈dimen〉}
\objectheight 〈add op〉 {〈dimen〉}

where 〈add op〉 is interpreted in the same way as
above.

The defaults for +=/-= are such that the result-
ing object will be the smallest containing/largest
contained square.

Exercise 12: How are the objects typeset by the
〈pos〉itions “*+UR{\sum}” and “*+DL{\sum}” en-
larged?

Bug: Currently changing the size of a circular ob-
ject is buggy—it is changed as if it is a rectangle
and then the change to the R parameter affects the
circle. This should be fixed probably by a general-
isation of the o shape to be ovals or ellipses with
horizontal/vertical axes.

4h. An invisible object will be treated completely nor-
mal except that it won’t be typeset, i.e., XY-pic will
behave as if it was.

4i. A hidden object will be typeset but hidden from
XY-pic in that it won’t affect the size of the entire
picture as discussed in §2.1.

10

Syntax Action

〈object〉 −→ 〈modifier〉 〈object〉 apply 〈modifier〉 to 〈object〉
| 〈objectbox〉 build 〈objectbox〉 then apply its 〈modifier〉s

〈objectbox〉 −→ { 〈text〉 } build default4a object
| 〈library object〉 use 〈library object〉 (see §6)
| 〈TEX box〉 { 〈text〉 } build box4b object with 〈text〉 using the given 〈TEX box〉

command, e.g., \hbox
| \object 〈object〉 wrap up the 〈object〉 as a finished object box4c

| \composite { 〈composite〉 } build composite object box4d

| \xybox { 〈pos〉 〈decor〉 } package entire XY-picture as object4e with the right size

〈modifier〉 −→ ! 〈vector〉 〈object〉 has its is reference point shifted4f by 〈vector〉
| ! 〈object〉 has the original reference point reinstated

| 〈add op〉 〈size〉 change 〈object〉 size4g
| i | h 〈object〉 is invisible4h, hidden4i
| [〈shape〉] 〈object〉 is given the specified 〈shape〉4j
| 〈direction〉 set current direction for this 〈object〉

〈add op〉 −→ + | - | = | += | -= grow, shrink, set, grow to, shrink to

〈size〉 −→ 〈empty〉 default size4g

| 〈vector〉 size as sides of rectangle surrounding the 〈vector〉
〈direction〉 −→ 〈diag〉 〈diag〉onal direction4k

| v 〈vector〉 direction4k of 〈vector〉
| 〈direction〉 : 〈vector〉 vector relative to 〈direction〉4k
| 〈direction〉 _ | 〈direction〉 ^ 90◦ clockwise/anticlockwise of 〈direction〉4k

〈diag〉 −→ 〈empty〉 default diagonal4k

| l | r | d | u left, right, down, up diagonal4k

| ld | rd | lu | ru left/down, . . . diagonal4k

〈composite〉 −→ 〈object〉 first object is required

| 〈composite〉 * 〈object〉 add 〈object〉 to composite object box4d

Figure 3: 〈object〉s.

11

4j. Setting the shape of an object forces the shape of
its edge to be as indicated: the kernel just provides
the three shapes [.], [], and [o], corresponding
to the outlines

× , ×L R
D

U
, and ×g̀afbecdL R

D

U

where the× denotes the point of the reference posi-
tion in the object (the first is a point). Extensions
can provide more shapes, however, all shapes set
the extent dimensions L, R, D, and U .

The default shape for objects is [] and for plain
coordinates it is [.].

Note: Extensions may add 〈shape〉 object
〈modifier〉s of two kinds: either [〈keyword〉] or
[〈character〉 〈argument〉]. Some of these 〈shape〉s
do other things than set the edge of the object.

4k. Setting the current direction is simply pretending
for the typesetting of the object (and the following
〈modifier〉s) that some connection set it.

It is particularly easy to set absolute, 〈diag〉onal
directions:

HOINJMKL
dl = ld

⑧⑧⑧⑧⑧⑧

��

d
�� dr = rd

❄❄❄❄❄❄

��

r//

ur = ru
⑧⑧⑧⑧⑧⑧

??

uOO
ul = lu❄❄❄❄❄❄

__

l oo

Alternatively v〈vector〉 sets the direction as if the
connection from 0 to the 〈vector〉 had been typeset
except that the origin is assumed zero such that di-
rections v(x,y) mean the natural thing, i.e., is the
direction of the connection from (0,0) to (x,y).
With the initial coordinate system this means that
the directions ur and v(1,1) are identical.

The action for a v reads a 〈vector〉 and sets the di-
rection accordingly using some expansion hackery
to propagate it out. The origin is cleared locally
to make v(x,y) behave as it should, i.e., use the
direction of

Once the initial direction is established as either
the last one or an absolute one then the remainder
of the direction is interpreted.

Adding _ and ^ denote the result of rotating the
default direction a right angle in the positive and
negative direction.

A trailing :〈vector〉 is like v〈vector〉 but uses the
〈direction〉 to set up a standard square base such

that :(0,1) and :a(90) mean the same as ^ and
_ is equivalent to :(0,-1) and :a(-90).

To Do: Allow :a(〈angle〉).

Exercise 13: What is the effect of the
〈modifier〉s v/1pc/ and v/-1pc/?

5 Decorations

〈Decor〉ations are actual TEX macros that decorate the
current picture in manners that depend on the state.
They are used after the 〈pos〉ition either of the outer
\xy. . . \endxy or inside {. . . }. The possibilities are
given in figure 4 with notes below.

Most options add to the available 〈decor〉, in particu-
lar the v2 option loads many more sinceXY-pic versions
prior to 2.7 provided most features as 〈decor〉.

Notes

5a. Saving and restoring allows ‘excursions’ where lots
of things are added to the picture without affect-
ing the resulting XY-pic state, i.e., c, p, and base,
and without requiring matching {}s. The indepen-
dence of {} is particularly useful in conjunction
with the \afterPOS command, for example, the
definition

\def\ToPOS{\save\afterPOS{%

\POS**{}?>*\dir2{>}**\dir2{-}

\restore};p,}

will make the code \ToPOS 〈pos〉 make a dou-
ble arrow from the current object to the 〈pos〉
(computed relative to it) such that \xy *{A}

\ToPOS +<10mm,2mm> \endxy will typeset the pic-
ture A

.6❡❡❡❡❡ ❡❡❡❡❡ .

Note: Saving this way in fact uses the same state
as the {} ‘grouping’, so the code p1, {p2\save},
. . . {\restore} will have c = p1 both at the . . .
and at the end!

5b. One very tempting kind of TEX commands to per-
form as 〈decor〉 is arithmetic operations on the XY-
pic state. This will work in simple XY-pictures as
described here but be warned: it is not portable

because all XY-pic execution is indirect, and this is
used by several options in nontrivial ways. Check
the TEX-nical documentation [11] for details about
this!

Macros that expand to 〈decor〉 will always do the
same, though.

12

Syntax Action

〈decor〉 −→ 〈command〉 〈decor〉 either there is a command. . .
| 〈empty〉 . . . or there isn’t.

〈command〉 −→ \save 〈pos〉 save state5a for restoration by later \restore, then do
〈pos〉

| \restore restore state5a saved by matcing \save

| \POS 〈pos〉 interpret 〈pos〉
| \afterPOS { 〈decor〉 } 〈pos〉 interpret 〈pos〉 and then perform 〈decor〉
| \drop 〈object〉 drop 〈object〉 as the 〈pos〉 * operation
| \connect 〈object〉 connect with 〈object〉 as the 〈pos〉 ** operation
| \relax do nothing

| 〈TEX commands〉 any TEX commands5b and user defined macros that
neither generates output (watch out for spaces!) nor
changes the grouping may be used

| \xyverbose | \xytracing | \xyquiet tracing5c commands

| \xyignore {〈pos〉 〈decor〉} ignore5d XY-code

| \xycompileto {〈name〉} {〈pos〉 〈decor〉} compile5e to file 〈name〉.xyc

Figure 4: 〈decor〉ations.

5c. \xyverbose will switch on a tracing of all the XY-
pic commands executed. \xytracing traces even
more: the entire XY-pic state is printed after each
modification. \xyquiet restores default quiet op-
eration.

5d. Ignoring means that the 〈pos〉 〈decor〉 is still
parsed the usual way but nothing is typeset and
the XY-pic state is not changed.

5e. It is possible to save the commands to generate
parts of anXY-picture to a file such that subsequent
typesetting of those parts is significantly faster:
this is called compiling. The created file will be
named 〈name〉.xyc and contain code to check that
the compiled code still corresponds to the 〈pos〉
〈decor〉 as well as more efficient compiled code to
redo it. If the 〈pos〉 〈decor〉 has changed then the
compilation is redone and 〈name〉.xyc recreated.

Bug: Currently you can only compile matrices
(built with the matrix feature) where all entries
are empty or start with something that is unex-
pandable.

6 Kernel object library

In this section we present the library objects provided
with the kernel language—several options add library
objects. They fall into three types: Most of the kernel
objects (including all those usually used with ** to
build connections) are directionals , described in §6.1.

The remaining kernel library objects are circles of §6.2
and text of §6.3.

6.1 Directionals

The kernel provides a selection of directionals : objects
that depend on the current direction. They all take
the form

\dir〈dir〉

to typeset a particular 〈dir〉ectional object. All have
the structure

〈dir〉 −→ 〈variant〉{〈main〉}

with 〈variant〉 being 〈empty〉 or one of the characters
^_23 and 〈main〉 some mnemonic code.
We will classify the directionals primarily intended

for building connections as connectors and those pri-
marily intended for placement at connection ends or as
markers as tips .
Figure 5 shows all the 〈dir〉ectionals defined by the

kernel with notes below; each 〈main〉 type has a line
showing the available 〈variant〉s. Notice that only some
variants exist for each 〈dir〉—when a nonexisting vari-
ant of a 〈dir〉 is requested then the 〈empty〉 variant
is used silently. Each is shown in either of the two
forms available in each direction as applicable: con-
necting a © to a (typeset by **\dir〈dir〉) and as a
tip at the end of a dotted connection of the same vari-
ant (i.e., typeset by the 〈pos〉 **\dir〈variant〉{.} ?>

*\dir〈dir〉).

13

Dummy6a

\dir{}

Plain connectors6b

\dir{-} '!&"%#$ ✐✐✐✐✐✐✐✐ \dir2{-} '!&"%#$ ✐✐✐✐✐✐✐✐
✐✐✐✐✐✐✐✐ \dir3{-} '!&"%#$ ✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐
✐✐✐✐✐✐✐✐

\dir{.} '!&"%#$ \dir2{.} '!&"%#$ \dir3{.} '!&"%#$
\dir{~} '!&"%#$ 4t4t4t4t4t \dir2{~} '!&"%#$ 4t4t4t4t4t

4t4t4t4t4t \dir3{~} '!&"%#$ 4t4t4t4t4t
4t4t4t4t4t

4t4t4t4t4t

\dir{--} '!&"%#$ ✐✐✐✐ \dir2{--} '!&"%#$ ✐✐✐✐
✐✐✐✐ \dir3{--} '!&"%#$ ✐✐✐✐

✐✐✐✐
✐✐✐✐

\dir{~~} '!&"%#$ 4t
4t

4t \dir2{~~} '!&"%#$ 4t
4t

4t
4t

4t
4t \dir3{~~} '!&"%#$ 4t

4t
4t

4t
4t

4t

4t
4t

4t

Plain tips6c

\dir{>}
44

\dir^{>}
4

\dir_{>}
4

\dir2{>}
08

\dir3{>} ✐/:

\dir{<}
tt

\dir^{<}
t

\dir_{<}
t

\dir2{<}
px

\dir3{<} ✐oz

\dir{|}
✮

\dir^{|}
✮

\dir_{|}
✮

\dir2{|}
✮✮

\dir3{|}
✮✮

\dir{(}
' �

\dir^{(}
' �

\dir_{(}
�'

\dir{)}
gG \dir^{)}

G g
\dir_{)} gG

\dir^{‘}
'

\dir_{‘}
�

\dir^{’}
G

\dir_{’} g

Constructed tips6d

\dir{>>}
44 44

\dir^{>>}
4 4

\dir_{>>}
4 4

\dir2{>>} 08 08 \dir3{>>} ✐/:✐/:

\dir{<<}
tttt

\dir^{<<}
tt

\dir_{<<}
tt

\dir2{<<}
pxpx

\dir3{<<}
✐oz✐oz

\dir{||}
✮ ✮

\dir^{||}
✮ ✮

\dir_{||}
✮ ✮

\dir2{||}
✮ ✮✮ ✮

\dir3{||}
✮ ✮✮ ✮

\dir{|-}
✮✐

\dir^{|-}
✮✐

\dir_{|-}
✮✐

\dir2{|-}
✮✐✮✐

\dir3{|-}
✮✐✮✐✮✐

\dir{>|}
✮44

\dir{>>|}
✮44 44

\dir{|<}
✮tt

\dir{|<<}
✮ tttt

\dir{+}
✮✐

\dir{x}
◆✍ \dir{/}

✤
\dir{*} • \dir{o} ◦

Figure 5: Kernel library 〈dir〉ectionals

As a special case an entire 〈object〉 is allowed as a
〈dir〉 by starting it with a *: \dir* is equivalent to
\object.

Notes

6a. You may use \dir{} for a “dummy” directional
object (in fact this is used automatically by **{}).
This is useful for a uniform treatment of connec-
tions, e.g., making the ? 〈pos〉 able to find a point
on the straight line from p to c without actually
typesetting anything.

6b. The plain connectors group contains basic direc-
tionals that lend themself to simple connections.

By default XY-pic will typeset horizontal and verti-
cal \dir{-} connections using TEX rules. Unfortu-
nately rules is the feature of the DVI format most

commonly handled wrong by DVI drivers. There-
fore XY-pic provides the 〈decor〉ations

\NoRules

\UseRules

that will switch the use of such off and on.

As can be seen by the last two columns, these (and
most of the other connectors) also exist in double
and triple versions with a 2 or a 3 prepended to
the name. For convenience \dir{=} and \dir{:}

are synonyms for \dir2{-} and \dir2{.}, re-
spectively; similarly \dir{==} is a synonym for
\dir2{--}.

6c. The group of plain tips contains basic objects that
are useful as markers and arrowheads making con-

14

nections, so each is shown at the end of a dotted
connection of the appropriate kind.

They may also be used as connectors and will build
dotted connections. e.g., **\dir{>} typesets

444444444444

Exercise 14: Typeset the following two +s and
a tilted square:

+
+♦

✴✴♦

Hint : the dash created by \dir{-} has the length
5pt.

6d. These tips are combinations of the plain tips
provided for convenience (and optimised for ef-
ficiency). New ones can be constructed using
\composite and by declarations of the form

\newdir 〈dir〉 {〈composite〉}

which defines \dir〈dir〉 as the 〈composite〉 (see
note 4d for the details).

6.2 Circle segments

Circle 〈object〉s are round and typeset a segment of the
circle centered at the reference point. The syntax of
circles is described in figure 6 with explanations below.
The default is to generate a full circle with the spec-

ified radius, e.g.,

\xy*\cir<4pt>{}\endxy typesets “��������”
\xy*{M}*\cir{}\endxy — “M '!&"%#$”

All the other circle segments are subsets of this and
have the shape that the full circle outlines.
Partial circle segments with 〈orient〉ation are the

part of the full circle that starts with a tangent vec-
tor in the direction of the first 〈diag〉onal (see note 4k)
and ends with a tangent vector in the direction of the
other 〈diag〉onal after a clockwise (for _) or anticlock-
wise (for ^) turn, e.g.,

\xy*\cir<4pt>{l^r}\endxy typesets “���� ”
\xy*\cir<4pt>{l_r}\endxy — “���� ”
\xy*\cir<4pt>{dl^u}\endxy — “�����”
\xy*\cir<4pt>{dl_u}\endxy — “���”
\xy*+{M}*\cir{dr_ur}\endxy — “ M8?9:;<”

If the same 〈diag〉 is given twice then nothing is typeset,
e.g.,

\xy*\cir<4pt>{u^u}\endxy typesets “ ”

Special care is taken to setup the 〈diag〉onal defaults:

• After ^ the default is the diagonal 90◦ anticlock-
wise from the one before the ^.

• After _ the default is the diagonal 90◦ clockwise
from the one before the _.

The 〈diag〉 before ^ or _ is required for \cir 〈objects〉.

Exercise 15: Typeset the following shaded circle
with radius 5pt: '!&"%#$!"#$!"#$!"#$
6.3 Text

Text in pictures is supported through the 〈object〉 con-
struction

\txt 〈width〉 〈style〉 {〈text〉}

that builds an object containing 〈text〉 typeset to
〈width〉 using 〈style〉; in 〈text〉 \\ can be used as an
explicit line break; all lines will be centered. 〈style〉
should either be a font command or some other stuff
to do for each line of the 〈text〉 and 〈width〉 should be
either <〈dimen〉> or 〈empty〉.

7 XY-pic option interface

Note: LATEX users should also consult the paragraph
on “xy.sty” in §1.1.
XY-pic is provided with a growing number of options

supporting specialised drawing tasks as well as exotic
output devices with special graphic features. These
should all be loaded using this uniform interface in or-
der to ensure that the XY-pic environment is properly
set up while reading the option.

\xyoption { 〈option〉 }
\xyrequire { 〈option〉 }

\xyoption will load the XY-pic option
file xy〈option〉.tex; \xyrequire will do so only if it
is not already loaded, if it is then nothing happens.
Sometimes some declarations of an option or header

file or whatever only makes sense after some particular
other option is loaded. In that case the code should be
wrapped in the special command

\xywithoption { 〈option〉 } { 〈code〉 }

which indicates that if the 〈option〉 is already loaded
then 〈code〉 should be executed now, otherwise it
should be saved and if 〈option〉 ever gets loaded then
〈code〉 should be executed afterwords.
Finally a description of the format of option files:

they must look like

15

Syntax Action

\cir 〈radius〉 { 〈cir〉 } 〈cir〉cle segment with 〈radius〉
〈radius〉 −→ 〈empty〉 use Rc as the radius

| 〈vector〉 use X of the 〈vector〉 as radius
〈cir〉 −→ 〈empty〉 full circle of 〈radius〉

| 〈diag〉 〈orient〉 〈diag〉 partial circle from first 〈diag〉onal through to the second
〈diag〉onal in the 〈orient〉ation

〈orient〉 −→ ^ anticlockwise
| _ clockwise

Figure 6: 〈cir〉cles.

%% 〈identification〉
%% 〈copyright, . . . 〉
\ifx\xyloaded\undefined \input xy \fi

\xyprovide{〈option〉}{〈name〉}{〈version〉}%
{〈author〉}{〈email〉}{〈address〉}

〈body of the option〉
\xyendinput

The 6 arguments to \xyprovide should contain the
following:

〈option〉 Option load name as used in the \xyoption

command. This should be safe and distinguishable
for any operating system and is thus limited to 6
characters chosen among the lowercase letters (a–
z), digits (0–9), and dash (-).

〈name〉 Descriptive name for the option.

〈version〉 Identification of the version of the option.

〈author〉 The name(s) of the author(s).

〈email〉 The electronic mail address(es) of the au-
thor(s) or the affiliation if no email is available.

〈address〉 The postal address(es) of the author(s).

This information is used not only to print a nice ban-
ner but also to (1) silently skip loading if the same
version was preloaded and (2) print an error message
if a different version was preloaded.

Part II

Extensions

This part documents the graphic capabilities added by
each standard extension option. For each is indicated
the described version number, the author, and how it
is loaded.

8 Curve and Spline extension

Vers. 2.12 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{curve}

This option provides XY-pic with the ability to typeset
spline curves and to construct curved connections using
arbitrary directional objects. Warning: Using curves
can be quite a strain on TEX’s memory; you should
therefore limit the length and number of curves used
on a single page. Memory use is less when combined
with a backend capable of producing its own curves;
e.g., the PostScript backend).
Simple ways to specify curves inXY-pic are as follows:

**\crv{〈poslist〉} curved connection
**\crvs{〈dir〉} get 〈poslist〉 from the stack
\curve{〈poslist〉} as a 〈decor〉ation

in which 〈poslist〉 is a list of valid 〈pos〉itions. The
decoration form \curve is just an abbreviation for
\connect\crv. As usual, the current p and c are used
as the start and finish of the connection, respectively.
Within 〈poslist〉 the 〈pos〉itions are separated by &. A
full description of the syntax for \crv is given in fig-
ure 7.

A

B
❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

0

1

2

4

16

If 〈poslist〉 is empty a straight connection is com-
puted. When the length of 〈poslist〉 is one or two then
the curve is uniquely determined as a single-segment
Bézier quadratic or cubic spline. The tangents at p
and c are along the lines connecting with the adjacent
control point. With three or more 〈pos〉itions a cubic
B-spline construction is used. Bézier cubic segments
are calculated from the given control points.
The previous picture was typeset using:

\xy (0,20)*+{A};(60,0)*+{B}

**\crv{}

**\crv{(30,30)}

**\crv{(20,40)&(40,40)}

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

\endxy

except for the labels, which denote the number of en-
tries in the 〈poslist〉. (Extending this code to include
the labels is set below as an exercise).
The ?-operator of §3 (note 3h) finds arbitrary
〈place〉s along a curve in the usual way.

Exercise 16: Extend the code given for the curves
in the previous picture so as to add the labels giving
the number of control points.

Using ? will set the current direction to be tangen-
tial at that 〈place〉, and one can 〈slide〉 specified dis-
tances along the curve from a found 〈place〉 using the
?. . . /〈dimen〉/ notation:

A

B

oo

NN

⊕x⊕x
′

⊗

Q

P

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

Exercise 17: Suggest code to produce something like
the above picture; the spline curve is the same as in the
previous picture. Hints : The line is 140pt long and
touches 0.28 of the way from A to B and the x is 0.65
of the way from A to B.

The positions in 〈poslist〉 specify control points

which determine the initial and final directions of the
curve—leaving p and arriving at c—and how the curve
behaves in between, using standard spline construc-
tions. In general, control points need not lie upon the
actual curve.
A natural spline parameter varies in the interval [0, 1]

monotonically along the curve from p to c. This is used
to specify 〈place〉s along the curve, however there is no

easy relation to arc-length. Generally the parameter
varies more rapidly where the curvature is greatest.
The following diagram illustrates this effect for a cubic
spline of two segments (3 control points).

A

B
❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

��

��

��

��
��

yy ��
rr **✤

(<)

(>)

.1

.9❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨

.2

.8❭❭❭❭❭❭❭❭❭❭❭❭❭❭
.3

.7❫❫❫❫❫❫❫❫❫❫
.4 .6❴❴❴❴❴❴

.5

Exercise 18: Write code to produce a picture such
as the one above. (Hint : Save the locations of places
along the curve for later use with straight connec-
tions.)

To have the same 〈pos〉 occuring as a multiple control
point simply use a delimiter, which leaves the 〈pos〉
unchanged. Thus \curve{〈pos〉&} uses a cubic spline,
whereas \curve{〈pos〉} is quadratic.
Repeating the same control point three times in suc-

cession results in straight segments to that control
point. Using the default styles this is an expensive
way to get straight lines, but it allows for extra effects
with other styles.

Notes

8a. The “drop” object is set once, then “dropped”
many times at appropriately spaced places along
the curve. If directional, the direction from p to
c is used. Default behaviour is to have tiny dots
spaced sufficiently closely as to give the appear-
ance of a smooth curve. Specifying a larger size
for the “drop” object is a way of getting a dotted
curve (see the example in the next note).

8b. The “connect” object is also dropped at each place
along the curve. However, if non-empty, this object
uses the tangent direction at each place. This al-
lows a directional object to be specified, whose ori-
entation will always match the tangent. To adjust
the spacing of such objects, use an empty “drop”
object of non-zero size as shown here:

A

B

.. .
.

.
��
��
$$ '')) ++ -- .. // 00 11 22 33 44

\xy (0,0)*+{A}; (50,-10)*+{B}

17

Syntax Action

\curve〈modifier〉{〈curve-object〉〈poslist〉} construct curved connection

〈modifier〉 −→ 〈empty〉 zero or more modifiers possible; default is ~C
| ~〈curve-option〉 〈modifier〉 set 〈curve-option〉

〈curve-option〉 −→ p | P | l | L | c | C show only8d control points (p=points), joined by lines
(l=lines), or curve only (c=curve)

| pc | pC | Pc | PC show control points8f and curve8e

| lc | lC | Lc | LC show lines joining8g control points and curve8e

| cC plot curve twice, with and without specified formatting

〈curve-object〉 −→ 〈empty〉 use the appropriate default style

| ~*〈object〉 〈curve-object〉 specify the “drop” object8a and maybe more8c

| ~**〈object〉 〈curve-object〉 specify the “connect” object8b and maybe more8c

〈poslist〉 −→ 〈empty〉 | 〈pos〉 〈delim〉 〈poslist〉 list of positions for the control points

| ~@ | ~@ 〈delim〉 〈poslist〉 add the current stack8h to the control points

〈delim〉 −→ & allowable delimiter

Figure 7: Syntax for curves.

**\crv{~*=<4pt>{.} (10,10)&(20,0)&(40,15)}

\crv{~*=<8pt>{}~!/-5pt/\dir{>}(10,-20)

&(40,-15)} \endxy

When there is no “connect” object then the tan-
gent calculations are not carried out, resulting in
a saving of time and memory; this is the default
behaviour.

8c. The “drop” and “connect” objects can be specified
as many times as desired. Only the last specifi-
cation of each type will actually have any effect.
(This makes it easy to experiment with different
styles.)

8d. Complicated diagrams having several spline curves
can take quite a long time to process and may use
a lot of TEX’s memory. A convenient device, espe-
cially while developing a picture, is to show only
the location of the control points or to join the
control points with lines, as a stylized approxima-
tion to the spline curve. The 〈curve-option〉s ~p

and ~l are provided for this purpose. Uppercase
versions ~P and ~L do the same thing but use any
〈curve-object〉s that may be specified, whereas the
lowercase versions use plain defaults: small cross
for ~p, straight line for ~l. Similarly ~C and ~c set
the spline curve using any specified 〈curve-option〉s
or as a (default) plain curve.

8e. Use of ~p, ~l, etc. is extended to enable both the
curve and the control points to be easily shown in
the same picture. Mixing upper- and lower-case

specifies whether the 〈curve-option〉s are to be ap-
plied to the spline curve or the (lines joining) con-
trol points. See the examples accompanying the
next two notes.

8f. By default the control points are marked with a
small cross, specified by *\dir{x}. The “connect”
object is ignored completely.

A

B
✺✉

✺✉ ✺✉

......
....
...
...
...
...
.....
....................................

was typeset by . . .

\xy (0,0)*+{A};(50,-10)*+{B}

**\crv~pC{~*=<\jot>{.}(10,-10)&(20,15)

&(40,15)} \endxy

8g. With lines joining control points the default
“drop” object is empty, while the “connect” object
is \dir{-} for simple straight lines. If non-empty
the “drop” object is placed at each control point.
The “connect” object may be used to specify a
fancy line style.

18

A

B

⊕⑧
⑧

⑧
⑧

⑧
⑧

⑧

⊕❚❚❚❚

✷
✷

✷
✷

✷
✷

✷
✷

was typeset by . . .

\xy (0,0)*+{A};(50,-10)*+{B}

\crv~Lc{~\dir{--}~*{\oplus}(20,20)

&(35,15)} \endxy

8h. When a stack of 〈pos〉itions has been established
using the @i and @+ commands, these positions can
be used and are appended to the 〈poslist〉.

Note: Curves will be accessible to users through a
\crv〈dir〉 command that makes a curve out of every
directional. This is not finished yet.

9 Frame and Bracket extension

Vers. 2.12 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{frame}

The frame extension provides a variety of ways to puts
frames in XY-pictures.
The frames are XY-pic 〈object〉s on the form

\frm〈modifiers〉{〈frame〉}

to be used in 〈pos〉itions: Dropping a frame
with *. . .\frm. . .{〈frame〉} will frame the c object
modified by the given modifiers; connecting with
**. . . \frm. . . {〈frame〉} will frame the object c.p mod-
ified by the given modifiers.
Below we distinguish between ordinary frames and

‘brackets’.

9.1 Frames

Figure 8 shows the possible frames and the applicable
〈modifier〉s with reference to the notes below.

Notes

9a. The \frm{} frame is a dummy useful for not
putting a frame on something, e.g., in macros that
take a 〈frame〉 argument.

9b. Rectangular frames include \frm{.}, \frm{-},
\frm{=}, \frm{--}, \frm{==}, and \frm{o-}.
They all make rectangular frames that essentially
trace the border of a rectangle-shaped object.

The 〈frame〉s \frm{-} and \frm{=} allow an op-
tional corner radius that rounds the corners of
the frame with quarter circles of the specified ra-
dius. This is not allowed for the other frames—
the \frm{o-} frame always gives rounded cor-
ners of the same size as the used dashes (when
\xydashfont is the default one then these are 5pt
in radius).

Exercise 19: How do you think the author type-
set the following?

A/.-,()*+ B76540123
9c. Two frames put just rules in the picture: \frm{,}

puts a shade beneath the (assumed rectangu-
lar) object giving the illusion of ‘lifting’ it;
\frm<〈dimen〉>{,} makes this shade 〈dimen〉 deep.
\frm{*} just puts a black rule on top of the object.

\frm{-,} combines a \frm{-} with a \frm{,}.

9d. Circles done with \frm{o} have radius as (R+L)/2
and with \frm<〈dimen〉>{o} have radius as the
〈dimen〉; \frm{oo} makes a double circle with the
outermost circle being the same as that of \frm{o}.

Exercise 20: What is the difference between
*\cir{} and *\frm{o}?

To Do: Allow 〈frame variant〉s like those used for
directionals, i.e., \frm2{-} should be the same as
\frm{=}. Add \frm{o,} and more brackets.

9.2 Brackets

The possible brackets are shown in figure 9 with notes
below.

Notes

9e. Braces are just the standard plain TEX large braces
inserted correctly in XY-pic pictures with the ‘nib’
aligned with the reference point of the object they
brace.

Exercise 21: How do you think the author type-
set the following?

A

B

︷ ︸︸ ︷

︸ ︷︷ ︸

19

Framed with
\frm{}

frame9a

Framed with
\frm{.}

frame9b

Framed with
\frm{-}

frame9b

Framed with
\frm<8pt>{-}

frame9b

?> =<89 :; Framed with
\frm<100pt>{-}

frame9b

_^]\XY Z[
Framed with
\frm{=}

frame9b

Framed with
\frm<8pt>{=}

frame9b

?> =<89 :;/. -,() *+ Framed with
\frm<100pt>{=}

frame9b

^]\XY Z[^]\XY Z[
Framed with
\frm{--}

frame9b

❴ ❴ ❴ ❴ ❴ ❴✤
✤
✤
✤

✤
✤
✤
✤

❴ ❴ ❴ ❴ ❴ ❴

Framed with
\frm{o-}

frame9b

�� ❴ ❴ ❴ ❴ ��✤

✤

✤

✤�� ❴ ❴ ❴ ❴ ��
Framed with
\frm{,}

frame9c

Framed with
\frm<5pt>{,}

frame9c

Framed with
\frm{-,}

frame9c

Framed with
\frm{o}

frame9d
wvutpqrs Framed with

\frm<8pt>{o}

frame9d

?>=<89:;
Framed with
\frm{oo}

frame9d
wvutpqrsonmlhijk Framed with

\frm<8pt>{oo}

frame9d

?>=<89:;'&%$!"#
← Framed with \frm{*} frame . . . should only be used

for relatively small (and probably empty) objects

These are
overlayed
with the
\frm{.}

frame above
to show the
way they are
centered on
the object

Figure 8: Plain 〈frame〉s.

Framed with
\frm{_\}}

frame9e
︸ ︷︷ ︸

Framed with
\frm{^\}}

frame9e

︷ ︸︸ ︷

Framed with
\frm{\{}

frame9e

Framed with
\frm{\}}

frame9e

Framed with
\frm{_)}

frame9f
︸ ︸

Framed with
\frm{^)}

frame9f

︷ ︷

Framed with
\frm{(}

frame9f

Framed with
\frm{)}

frame9f

Figure 9: Bracket 〈frame〉s.

20

9f. Parenthesis are like braces except they have no
nib and thus do not depend on where the reference
point of c is.

Bug: The brackets above requires that the computer
modern cmex font is loaded in font position 3.
To Do: Some new frames and several new brackes

should be added.

10 Computer Modern tip exten-

sion

Vers. 2.12 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{cmtip}

This option provides arrow heads in the style of the
Computer Modern fonts by Knuth (see [6] and [5, ap-
pendix F]). These are often more pleasing in connection
with curved arrows.
The user can switch the “computer modern” versions

of the directionals shown in figure 10 on and off with
these declarations:

\UseComputerModernTips

\NoComputerModernTips

They are local and thus can be switched on and/or off
for individual pictures using the TEX grouping mecha-
nism, e.g.,

\xy*{} \ar

@{*{\UseComputerModernTips\dir{<}}%

-*{\NoComputerModernTips\dir{>}}}

(20,5)*{} \endxy

will typeset

ss

33❣❣❣❣❣❣❣❣❣❣❣❣

regardless of the tip choice in the surrounding text.

11 Line styles extension

Vers. 2.12 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{line}

This extension provides the ability to request various
effects related to the appearance of straight lines; e.g..
thickness, non-standard dashing, and colour.
These are effects which are not normally available

within TEX. Instead they require a suitable ‘back-end’
option to provide the necessary \special commands,
or extra fonts, together with appropriate commands to
implement the effects. Thus

Using this extension will have no
effect on the output unless used with
a backend that explicitly supports it.

The extension provides special effects that can be used
with any XY-pic 〈object〉 by defining [〈shape〉] modi-
fiers. The modification is local to the 〈object〉 currently
being built, so will have no effect if this object is never
actually used.
The following table lists the modifiers that have so

far been defined. They come in two types – either a
single keyword, or a key-character with the following
text treated as an argument.

[thicker] double line thickness
[thinner] halve line thickness
[|〈dimen〉] set thickness to 〈dimen〉
[|=〈word〉] make [〈word〉] set current

style settings
[|*] reuse previous style

Later settings of the linewidth override earlier settings;
multiple calls to [thicker] and [thinner] compound.

Saving styles Once specified for an 〈object〉, the
collection of styles can be assigned a name, via
[|=〈word〉]. Then [〈word〉] becomes a new style, suit-
able for use with the same or other 〈objects〉s. Use a
single 〈word〉 built from ordinary letters. A warning
message will be placed in the log file:
XY-pic Warning: Defining new style [〈word〉]

If [〈word〉] already had meaning the new definition
will still be imposed, but the following type of warning
will be issued:

XY-pic Warning: Redefining style [〈word〉]
The latter warning will appear if the definition occurs
within an \xymatrix or \diagram. This is perfectly
normal, being a consequence of the way that the matrix
code is handled. Similarly the message may appear
several times if the style definition is made within an
\ar.
The following illustrates how to avoid these messages
by defining the style without typesetting anything.

\setbox0=\hbox{%

\xy\drop[OrangeRed][|=A]{}\endxy}

Note 1: The current colour is regarded as part of
the style for this purpose.
Note 2: Such namings are global in scope. They are

intended to allow a consistent style to be easily main-
tained between various pictures and diagrams within
the same document.

Colours This extension supports a few standard
colours as styles: [red], [green], [blue], [cyan],
[magenta], [yellow], [black], [white] and [gray].
More extensive colour support is available using the
color extension.
The diagram in figure 11, page 24, uses different line-

thicknesses and colours.

21

Plain Computer Modern tips

\dir{>}
44

\dir^{>}
4

\dir_{>}
4

\dir{<}
tt

\dir^{<}
t

\dir_{<}
t

Constructed Computer Modern tips

\dir{>>}
44 44

\dir^{>>}
4 4

\dir_{>>}
4 4

\dir{<<}
tttt

\dir^{<<}
tt

\dir_{<<}
tt

\dir{>|}
✮
44

\dir{>>|}
✮
44 44

\dir{|<}
✮
tt

Figure 10: Computer Modern 〈dir〉ectionals

12 Rotate and Scale extension

Vers. 2.12 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{rotate}

This extension provides the ability to request that any
object be displayed rotated at any angle as well as
scaled in various ways.
These are effects which are not normally available

within TEX. Instead they require a suitable ‘back-end’
option to provide the necessary \special commands,
or extra fonts, together with appropriate commands to
implement the effects. Thus

Using this extension will have no
effect on the output unless used with
a backend that explicitly supports it.

The extension provides special effects that can be
used with any XY-pic 〈object〉 by defining [〈shape〉]
modifiers. The modification is local to the 〈object〉
currently being built, so will have no effect if this object
is never actually used.
The following table lists the modifiers that have so

far been defined. They come in two types – either a
single keyword, or a key-character with the following
text treated as a single argument.

[@] align with current direction
[@〈direction〉] align to 〈direction〉
[@!〈number〉] rotate 〈number〉 degrees
[*〈number〉] scale by 〈number〉
[*〈num〉x,〈num〉y] scale x and y separately

[left] rotate anticlockwise by 90◦

[right] rotate (clockwise) by 90◦

[flip] rotate by 180◦; same as
[*-1,-1]

[dblsize] scale to double size
[halfsize] scale to half size

These [〈shape〉]modifiers specify transformations of
the 〈object〉 currently being built. If the object has a

rectangle edge then the size of the rectangle is trans-
formed to enclose the transformed object; with a circle
edge the radius is altered appropriately.

Each successive transformation acts upon the result
of all previous. One consequence of this is that the
order of the shape modifiers can make a significant dif-
ference in appearance—in general, transformations do
not commute. Even successive rotations can give dif-
ferent sized rectangles if taken in the reverse order.
Sometimes this change of size is not desirable. The

following commands are provided to modify this be-
haviour.

\NoResizing prevents size adjustment
\UseResizing restores size adjustments

The \NoResizing command is also useful to have at
the beginning of a document being typeset using a
driver that cannot support scaling effects, in partic-
ular when applied to whole diagrams. In any case an
unscaled version will result, but now the spacing and
positioning will be appropriate to the unscaled rather
than the scaled size.

Scaling and Scaled Text The 〈shape〉 modifier can
contain either a single scale factor, or a pair indicating
different factors in the x- and y-directions. Negative
values are allowed, to obtain reflections in the coordi-
nate axes, but not zero.

Rotation and Rotated Text Within [@...] the
... are parsed as a 〈direction〉 locally, based on the cur-
rent direction. The value of count register \Direction
contains the information to determine the requested
direction. When no 〈direction〉 is parsed then [@] re-
quests a rotation to align with the current direction.
The special sequence [@!...] is provided to pass

an angle directly to the back-end. The XY-pic size
and shape of the 〈object〉 with \rectangleEdge is un-
changed, even though the printed form may appear ro-

22

tated. This is a feature that must be implemented spe-
cially by the back-end. For example, using the Post-

Script back-end, [@!45] will show the object rotated
by 45◦ inside a box of the size of the unrotated object.
To Do: Provide example of repeated, named trans-

formation.

Reflections Reflections can be specified by a com-
bination of rotation and a flip — either [hflip] or
[vflip].

Shear transformations To Do: Provide the struc-
ture to support these; then implement it in Post-

Script.

Example The diagram in figure 11 illustrates many
of the effects described above as well as some additional
ones defined by the color and rotate extensions.

Exercise 22: Suggest the code used by the author
to typeset 11.

The actual code is given in the solution to the exer-
cise. Use it as a test of the capabilities of your DVI-
driver. The labels should fit snugly inside the accom-
panying rectangles, rotated and flipped appropriately.
Bug: This figure also uses colours, alters line-

thickness and includes some PostScript drawing.
The colours may print as shades of gray, with the line
from A to B being thicker than normal. The wider
band sloping downwards may have different width and
length according to the DVI-driver used.

13 Colour extension

Vers. 2.10 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{color}

This extension provides the ability to request that any
object be displayed in a particular colour.
These are effects which are not normally available

within TEX. Instead they require a suitable ‘back-end’
option to provide the necessary \special commands,
or extra fonts, together with appropriate commands to
implement the effects. Thus

Using this extension will have no
effect on the output unless used with
a backend that explicitly supports it.

Colours are specified as a 〈shape〉 modifier which
gives the name of the colour requested. It is applied
to the whole of the current 〈object〉 whether this be
text, an XY-pic line, curve or arrow-tip, or a composite
object such as a matrix or the complete picture. How-
ever some DVI drivers may not be able to support the
colour in all of these cases.

[〈colour name〉] use named colour

\newxycolor{〈name〉}{〈code〉} define new colour
\UseCrayolaColors extra colour names

If the DVI-driver cannot support colour then a re-
quest for colour only produces a warning message in the
log file. After two such messages subsequent requests
are ignored completely.

Named colours and colour models New colour
names are created with \newxycolor, taking two ar-
guments. Firstly a name for the colour is given, fol-
lowed by the code which will ultimately be passed to
the output device in order to specify the colour. If
the current driver cannot support colour, or grayscale
shading, then the new name will be recognised, but
ignored during typesetting.

For PostScript devices, the XY-ps PostScript

dictionary defines operators rgb, cmyk and gray cor-
responding to the standard RGB and CMYK colour
models and grayscale shadings. Colours and shades
are described as: r g b rgb or c m y k cmyk or s
gray, where the parameters are numbers in the range
0 ≤ r, g, b, c,m, y, k, s ≤ 1. The operators link to the
built-in colour models or, in the case of cmyk for ear-
lier versions of PostScript, give a simple emulation
in terms of the RGB model.

Saving colour and styles When styles are saved
using [|=〈word〉], see §11, then the current colour set-
ting (if any) is saved also. Subsequent use of [〈word〉]
recovers the colour and accompanying line-style set-
tings.

Further colour names are defined by the command
\UseCrayolaColours that loads the file xyps-col.tex
where more colours are defined (consult the file for the
colours and their their specifications in the RGB or
CMYK models):

xyps-col.tex: This included file (version 2.10)
provides definitions for the 68 colours recognised by
name by Tomas Rokicki’s dvips driver [10]. These
colours become available for use in XY-pic pictures and
diagrams, as [〈shape〉] modifiers.

The information has been copied from Rokicki’s
color.proPostScript prolog file: “There are 68 pre-
defined colours, with names taken primarily from the
Crayola crayon box of 64 colours” [10, §16.1].

23

A

B

♥

♣❧❧

label 1 .label 2×
label 3

label 4

label 5×

label 6
label 7

label 8

special effect: aligned text

Figure 11: Rotations, scalings and flips

Part III

Features

This part documents the notation added by each stan-
dard feature option. For each is indicated the described
version number, the author, and how it is loaded.

The first two, ‘all’ and ‘dummy’, described in §§14
and 15, are trivial features that nevertheless prove use-
ful sometimes. The next two, ‘arrow’ and ‘2cell’, de-
scribed in §16 and 17, provide special commands for
objects that ‘point’. The following two, ‘matrix’ and
‘graph’, described in §§18 and 19, are input modes that
support different overall structuring of (parts of) XY-
pictures. The final feature, ‘v2’ described in §21, sup-
ports the input mode and arrow commands that were
available in XY-pic version 2.

14 All features

Vers. 2.12 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{all}

As a special convenience, this feature loads all standard
features (except v2, the version 2 compatibility) and
extensions; no backend is loaded.

15 Dummy option

Vers. 2.7 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{dummy}

This option is provided as a template for new options,
it provides neither features nor extensions.

16 Arrow and Path feature

Vers. 2.12 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{arrow}

This feature provides XY-pic with the arrow paradigm
presented in [12].
The basic concept introduced is the path: a connec-

tion that starts from c (the current object), ends at
a specified object, and may be split into several seg-
ments between intermediate specified objects that can
be individually labelled, change style, have breaks, etc.
§16.1 is about the \PATH primitive, including the syn-

tax of paths, and §16.2 is about the \ar5 customisa-
tion of paths to draw arrows using XY-pic directional
objects.

16.1 Paths

The fundamental commands of this feature are \PATH

and \afterPATH that will parse the 〈path〉 according
to the grammar in figure 12 with notes below.

Notes

16a. An 〈action〉 can be either of the characters =<>-/.
The associated 〈stuff〉 is saved and used to call

\PATHaction〈action〉{〈stuff〉}

at specific times while parsing the 〈path〉:

〈action〉 applied. . .
= before every segment
< before next segment
> before last segment
- for every subsegment
/ after every segment

5This name is in conflict with the command of the same name
in Karl Berry’s eplain format. Fortunately users are unlikely to
want both that and XY-pic.

24

Syntax Action

\PATH 〈path〉 interpret 〈path〉
\afterPATH{〈decor〉} 〈path〉 interpret 〈path〉 and then run 〈decor〉
〈path〉 −→ ~ 〈action〉 { 〈stuff〉 } 〈path〉 set 〈action〉16a to 〈stuff〉

| ~ + { 〈labels〉 } 〈path〉 set default 〈labels〉16b
| ~ { 〈stuff〉 } 〈path〉 set failure continuation16c to 〈stuff〉
| ’ 〈segment〉 〈path〉 make straight segment16d

| ‘ 〈turn〉 〈segment〉 〈path〉 make turning segment16f

| 〈segment〉 make last segment16g

〈turn〉 −→ 〈diag〉 〈turnradius〉 1/4 turn16f starting in 〈diag〉
| 〈cir〉 〈turnradius〉 explicit turn16f

〈turnradius〉 −→ 〈empty〉 use default turn radius
| / 〈dimen〉 set turnradius to 〈dimen〉

〈segment〉 −→ 〈path-pos〉 〈slide〉 〈labels〉 segment16e with 〈slide〉 and 〈labels〉
〈slide〉 −→ 〈empty〉 | < 〈dimen〉 > optional slide16h: 〈dimen〉 in the “above” direction

〈labels〉 −→ ^ 〈anchor〉 〈it〉 〈alias〉 〈labels〉 label with 〈it〉16i above 〈anchor〉
| _ 〈anchor〉 〈it〉 〈alias〉 〈labels〉 label with 〈it〉16i below 〈anchor〉
| | 〈anchor〉 〈it〉 〈alias〉 〈labels〉 break with 〈it〉16j at 〈anchor〉
| 〈empty〉 no more labels

〈anchor〉 −→ - 〈anchor〉 | 〈place〉 label/break placed relative to the 〈place〉 where - is a
synonym for <>(.5)

〈it〉 −→ 〈digit〉 | 〈letter〉 | {〈text〉} | 〈cs〉 〈it〉 is a default label16k

| * 〈object〉 〈it〉 is an 〈object〉
| @ 〈dir〉 〈it〉 is a 〈dir〉ectional

〈alias〉 −→ 〈empty〉 | ="〈id〉" optional name for label object16l

Figure 12: 〈path〉s

The =<> actions are always expanded in that se-
quence after p and c have been set up to the proper
start and end of the segment but before any 〈labels〉
are interpreted, the - action is expanded for each
subsegment after all 〈labels〉 have been interpreted
(see also note 16d), and finally the / action is ap-
plied.

The default \PATHaction macro just expands to
“\POS 〈stuff〉 \relax” thus 〈stuff〉 should be of the
form 〈pos〉 〈decor〉. The user can redefine this—in
fact the \ar command described in §16.2 below is
little more than a special \PATHaction command
and a clever defaulting mechanism.

16b. Defining default 〈labels〉 will insert these first in
the label sequence of every 〈segment〉. This is use-
ful to draw connections with a ‘center marker’ in
particular with arrows, e.g., the ‘mapsto’ example
explained below can be changed into a ‘breakto’
example: typing

\xy*+{0}\PATH

~={**{}}

~>{\save?>*\dir{>}\restore}

~-{**\dir{-}}

~+{|*\dir{/}}

’(10,1)*+{1} ’(20,-2)*+{2} (30,0)*+{3}

\endxy

will typeset

0 1✙❜❜ ❜❜
2

✠❯❯ ❯❯ 322✜❡❡ ❡❡

Note, however, that what goes into ~+{. . . } is
〈labels〉 and thus not a 〈pos〉 – it is not an action
in the sense explained above.

16c. Specifying ~{〈stuff〉} will set the “failure contin-
uation” to 〈stuff〉. This will be inserted when the
last 〈segment〉 is expected—it can even replace it
or add more 〈segment〉s, i.e.,
\xy *+{0} \PATH ~={**{}} ~-{**\dir{-}}

25

~{’(20,-2)*+{2} (30,0)*+{3}} ’(10,1)*+{1}

\endxy

is equivalent to

\xy *+{0} \PATH ~={**{}} ~-{**\dir{-}}

’(10,1)*+{1} ’(20,-2)*+{2} (30,0)*+{3}

\endxy

typesetting

0 1❜❜❜❜
2

❯❯❯❯ 3❡❡❡❡

because when \endxy is seen then the parser knows
that the next symbol is neither of the characters
~’‘ and hence that the last 〈segment〉 is to be ex-
pected. Instead, however, the failure continuation
is inserted and parsed, and the 〈path〉 is finished
by the inserted material.

Failure continuations can be nested:

\xy *+{0} \PATH ~={**{}} ~-{**\dir{-}}

~{~{(30,0)*+{3}}

’(20,-2)*+{2}} ’(10,1)*+{1}

\endxy

will also typeset the connected digits.

16d. A “straight segment” is interpreted as follows:

1. First p is set to the end object of the previous
segment (for the first segment this is c just
before the path command) and c is set to the
〈pos〉 starting the 〈segment〉, and the current
〈slide〉 is applied.

2. Then the = and < segment actions are ex-
panded (in that sequence) and the < action
is cleared. The resulting p and c become the
start and end object of the segment.

3. Then all 〈labels〉 (starting eith the ~+-defined
ones) are interpreted and typeset as described
below.

4. Finally the subsegment actions are expanded:
If there were n breaks then there are n + 1
subsegments and thus \PATHaction-{ 〈stuff〉
} will be expanded n + 1 times. The ith ex-
pansion, i ∈ {1, . . . , n+1}, will be performed
with

p = b0 . bi−1

c = bn+1 . bi

where bi denotes break i except that b0 is the
start and bn+1 the end object of the segment.

Example: Typically ~= is used to do something
that will setup the ?〈place〉 format to suit the seg-
ment connection which is then used by ~< to add
something to the ‘tail’ of the path and by ~> to
add to its ‘head’, and finally ~- is used to actually
typeset the connection beween the given breaks.
For example,

\xy*+{0}\PATH

~={**i\dir{-}}

~<{\save;?<*\dir{|}\restore}

~>{\save?>*\dir{>}\restore}

~-{**\dir{-}}

’(10,1)*+{1}|b ’(20,-2)*+{2} (30,0)*+{3}

\endxy

will build a ‘mapsto path’

0 1✧
b❜❜ ❜❜

2
❯❯❯❯ 322❡❡❡❡

as follows: For each segment we do the following:
(1) let = typeset an invisible connection that will
make ? behave correctly; (2) let < make the start
point (p) of the first segment be a \dir{|} on the
edge of the original p (the ;s make us modify p
rather than c); (3) let > make the end point of the
last segment be a \dir{>} tip; and (4) let - typeset
each subsegment of the connection as a solid line
(that will trace the invisible one set up in (1)).

Numerous variations are possible by varying what
goes in which actions, e.g.,

~={**i\dir{-}

\save;?<*\dir{|}; ?>*\dir{>}

\restore}

~-{**\dir{-}}

typesets

0 1✧ 11b❜❜ ❜❜
2

✕ **❯❯❯❯ 3✪ 22❡❡❡❡

with every segment a separate mapsto arrow, and

~={**i\dir{-}}

~-{**\dir{-}

\save;?<*\dir{|}; ?>*\dir{>}

\restore}

typesets

0 1b❜❜✧ 11 ❜❜✧ 11
2

❯❯❯❯✕ ** 3❡❡❡❡✪ 22

16e. A segment is a part of a 〈path〉 between a previ-
ous and a new target given as a 〈path-pos〉: nor-
mally this is just a 〈pos〉 as described in §3 but it
can be changed to something else by changing the
control sequence \PATHafterPOS to be something
other than \afterPOS.

16f. A turning segment is one that does not go all the
way to the given 〈pos〉 but only as far as required

26

to make a turn towards it. The c is set to the actual
turn object after a turning segment such that sub-
sequent turning or other segments will start from
there, in particular the last segment (which is al-
ways straight) can be used to finish a winding line.

What the turn looks like is determined by the
〈turn〉 form:

〈empty〉 Nothing between the ‘ and the 〈pos〉 is
interpreted the same as giving just the 〈diag〉
last used out of a turn.

〈diag〉 Specifying a single 〈diag〉 d is the same as
specifying either of the 〈cir〉cles d^ or d_, de-
pending on whether the specified 〈pos〉 has its
center ‘above’ or ‘below’ the line from p in the
〈diag〉onal direction.

〈cir〉 When a full explicit 〈cir〉cle is available then
the corresponding 〈cir〉cle object is placed
such that its ingoing direction is a continu-
ation of a straight connection from p and the
outgoing direction points such that a follow-
ing straight (or last) segment will connect it
to c (with the same slide).

Here is an example using all forms of 〈turn〉s:

base

A

GF a
oo

B

@Ab��
C

ABECDc //

E
d

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

__e
oo

was typeset by

\xy <4pc,0pc>:(0,0)

*+\txt{base}="base"

\PATH ~={**{}} ~-{**\dir{-}?>*\dir{>}}

‘l (-1,-1)*{A} ^a

‘ (1,-1)*{B} ^b

‘_ul (1, 0)*{C} ^c

‘ul^l "base" ^d

"base" ^e

\endxy

Bug: Turns are only really resonable for paths
that use straight lines like the one above.

Note: Always write a valid 〈pos〉 after a 〈turn〉,
otherwise any following ^ or _ labels can confuse
the parser. So if you intend the ^r in ‘^r to be a
label then write ‘,^r, using a dummy , 〈pos〉ition.
The default used for turnradius can be set by the
operation

\turnradius 〈add op〉 {〈dimen〉}

that works like the kernel \objectmargin etc.
commands; it defaults to 10pt.

Exercise 23: Typeset

A@GAFBECD@GAFBE
??

using 〈turn〉s.

16g. The last segment is exactly as a straight one ex-
cept that the > action (if any) is executed (and
cleared) just after the < action.

16h. “Sliding” a segment means moving each of the
p, c objects in the direction perpendicular to the
current direction at each.

16i. Labelling means that 〈it〉 is dropped relative to
the current segment using a ? 〈pos〉ition. This thus
depends on the user setting up a connection with
a ** 〈pos〉 as one of the actions—typically the =

action is used for this (see note 16d for the details).
The only difference between ^ and _ is that they
shift the label in the ^ respectively _ direction; for
straight segments it is placed in the “superscript”
or “subscript” position.

Labels will be separated from the connection by
the labelmargin that you can set with the operation

\labelmargin 〈add op〉 {〈dimen〉}

that works like the kernel \objectmargin com-
mand; in fact labelmargin defaults to use object-

margin if not set.

16j. Breaking means to “slice a hole” in the connection
and insert 〈it〉 there. This is realized by typeset-
ting the connection in question in subsegments , one
leading to the break and one continuing after the
break as described in notes 16a and 16d.

16k. Unless 〈it〉 is a full-fledged 〈object〉 (by using the
* form), it is typeset using a \labelbox object
(initially similar to \objectbox of basic XY-pic but
using \labelstyle for the style).

Remark: You can only omit the {}s around single
letters, digits, and control sequences.

16l. A label is an object like any other in the XY-
picture. Inserting an 〈alias〉 ="〈id〉" saves the label
object as "〈id〉" for later reference.

Exercise 24: Typeset

33
A

❢❢❢❢❢❢❢❢❢

label
��✺✺

27

Syntax Action

\ar 〈arrow〉 〈path〉 make 〈arrow〉 along 〈path〉
〈arrow〉 −→ 〈form〉* 〈arrow〉 has the 〈form〉s
〈form〉 −→ @ 〈variant〉 use 〈variant〉 of arrow

| @ 〈variant〉 { 〈tip〉 } build arrow16m using 〈variant〉 of a standard stem and
〈tip〉 for the head

| @ 〈variant〉 { 〈tip〉 〈conn〉 〈tip〉 } build arrow16m using 〈variant〉 of 〈tip〉, 〈conn〉, and
other 〈tip〉 as arrow tail, stem, and head (in that or-
der)

| @/ 〈direction〉 〈dist〉 / curve16o arrow the 〈dist〉ance towards 〈direction〉
| @’ { 〈control points〉 } curve arrow using control points16p

| @* { 〈modifier〉* } use object 〈modifier〉s16q for all objects
| | 〈anchor〉 〈it〉 break each segment at 〈anchor〉 with 〈it〉
| ^ 〈anchor〉 〈it〉 | _ 〈anchor〉 〈it〉 label each segment at 〈anchor〉 with 〈it〉

〈variant〉 −→ 〈empty〉 | ^ | _ | 0 | 1 | 2 | 3 〈variant〉: plain, above, below, double, or triple
〈tip〉 −→ 〈tipchar〉* directional named as the sequence of 〈tipchar〉s

| 〈dir〉 any 〈dir〉ectional16n
〈tipchar〉 −→ < | > | (|) | | | ’ | ‘ | + | / recognised tip characters

| 〈letter〉 | 〈space〉 more tip characters

〈conn〉 −→ 〈connchar〉* directional named as the sequence of 〈connchar〉s
| 〈dir〉 any 〈dir〉ectional16n

〈connchar〉 −→ - | . | ~ | = | : recognised connector characters

Figure 13: 〈arrow〉s.

16.2 Arrows

Arrows are paths with a particularly easy syntax for
setting up arrows with tail , stem, and head in the
style of [12]. This is provided by a single 〈decor〉ation
the syntax of which is described in figure 13 (with the
added convention that a raised ‘*’ means 0 or more
repetitions of the preceeding nonterminal).

Notes

16m. Building an 〈arrow〉 is simply using the specified
directionals (using \dir of §6.1) to build a path:
the first 〈tip〉 becomes the arrow tail of the ar-
row, the 〈conn〉ection in the middle becomes the
arrow stem, and the second 〈tip〉 becomes the ar-

row head . If a 〈variant〉 is given before the { then
that variant \dir is used for all three. For exam-
ple,

\xy\ar @^{(->} (20,7)\endxy

typesets

' �

5❥❥❥❥❥❥❥❥❥❥❥❥❥

Exercise 25: Typeset these arrows:

A

A′8?9>:=;<
ZZ✹✹✹✹✹✹

A′′8?9>:=;<
OO A′′′@GAFBECD

DD✡✡✡✡✡✡
B

B′8?9>:=;<
tt

ZZZZ
B′′8?9>:=;<

❴❴❴❴

KSKS
B′′′@GAFBECD

❏❏❏❏

✡<J✡
<J

The above is a flexible scheme when used in con-
junction with the kernel \newdir to define all sorts
of arrowheads and -tails. For example,

\newdir{|>}{!/4.5pt/\dir{|}

*:(1,-.2)\dir^{>}

*:(1,+.2)\dir_{>}}

defines a new arrow tip that makes

\xy (0,0)*+{A}

\ar @{=|>} (20,3)*+{B}

\endxy

typeset

A
B✩ .5❞❞❞❞❞❞❞❞ ❞❞❞❞❞❞❞❞

Notice that the fact that the directional uses only
〈tipchar〉 characters means that it blends naturally
with the existing tips.

28

Exercise 26: Often tips used as ‘tails’ have their
ink on the wrong side of the point where they are
placed. Fortunately space is also a 〈tipchar〉 so we
can define \dir{ >} to generate a ‘tail’ arrow. Do
this such that

\xy (0,0)*+{A}="a", (20,3)*+{B}="b"

\ar @{>->} "a";"b" < 2pt>

\ar @{ >->} "a";"b" <-2pt>

\endxy

typesets

A
B11
11❞❞❞❞❞❞❞❞❞ 11
11❞❞❞❞❞❞❞❞

16n. Specifying a 〈dir〉 as a 〈tip〉 or 〈conn〉 means that
\dir〈dir〉 is used for that 〈tip〉 or 〈conn〉. For ex-
ample,

\xy\ar @{<^{|}>} (20,7)\endxy

typesets

uu

55✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯

When using this you must specify a {} dummy
〈dir〉ectional in order to ignore one of the tail, stem,
or tip components, e.g.,

\xy\ar @{{}{+}>} (20,7)\endxy

typesets
55✯❥✯❥✯❥✯❥✯❥✯❥✯❥✯❥✯❥✯❥✯❥✯❥

In particular *〈object〉 is a 〈dir〉 so any 〈object〉
can be used for either of the tail, stem, or head
component:

\xy\ar @{*{x}*{y}*{z}} (20,7)\endxy

typesets

x

zyyyyyyyyy

Note: A * introduces an 〈object〉 whereas the di-
rectional ‘•’ is typeset by the 〈dir〉 {*}.

Exercise 27: Typeset

55 55

uuuu❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥❖✎✯❥

using only one \ar command.

16o. Curving the arrow by /dℓ/, where d is a
〈direction〉 and ℓ a 〈dimen〉sion, makes the stem

a curve which is similar to a straight line but has
had it’s center point ‘dragged’ the distance ℓ in d:��	�
��

��	�
����
↑

$$

↓

��	�
��
��	�
����

u

$$

d

was typeset by

\xy

\POS (0,10) *\cir<2pt>{} ="a"

, (20,-10)*\cir<2pt>{} ="b"

\POS"a" \ar @/^1ex/ "b"|\uparrow

\POS"a" \ar @/_1ex/ "b"|\downarrow

%

\POS (20,10) *\cir<2pt>{} ="a"

, (40,-10)*\cir<2pt>{} ="b"

\POS"a" \ar @/u1ex/ "b"|u

\POS"a" \ar @/d1ex/ "b"|d

\endxy

This is really just a shorthand for curving using
the more general form described next: @/dℓ/ is the
same as @’{ @+{**{} ?+/d 2ℓ /} } which makes
the (quadratic) curve pass through the point de-
fined by the 〈pos〉 **{} ?+/dℓ/.

16p. The second curve form is the more general one
where more than one control point can be de-
fined. The kernel stack is used for this purpose:
the 〈control points〉 should be a 〈pos〉 pushing the
control points in sequence on the stack: with the
sequence c1, . . . , ck of control 〈coord〉inates this re-
sults in the 〈form〉

@’{ @+c1 . . . @+ck}

See the curve extension described in §8 for the way
the control points are used.

Exercise 28: Typeset the ‘balloon arrow’

•��

Hint : it uses a curve with three control points.

16q. A @*{. . . } formation defines what object
〈modifier〉s should be used when building objects
that are part of the arrow. This is mostly use-
ful in conjunction with extensions that define
additional [〈shape〉] modifiers, e.g., if a [red]

〈modifier〉 changes the colour of an object to red
then @*{[red]} will make the entire arrow red.

All the features of 〈path〉s described above are avail-
able for arrows.

29

17 Two-cell feature

Vers. 2.12 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{2cell}

This feature is designed to facilitate the typesetting of
curved arrows, either singly or in pairs, together with
labels on each part and between. The intended math-
ematical usage is for typesetting categorical “2-cell”
morphisms and “pasting diagrams”, for which special
features are provided. These features also allow attrac-
tive non-mathematical effects.

The 2-cell feature makes use of facilities from the
‘curve’ extension which is therefore automatically
loaded.

17.1 Typesetting 2-cells in Diagrams

Categorical “2-cell” morphisms are used in the study
of tensor categories and elsewhere. The morphisms
are displayed as a pair of curved arrows, symmetri-
cally placed, together with an orientation indicated by
a short broad arrow, or Arrow. Labels may be placed
on all three components.

A

f

))

g

55
✤✤ ✤✤
�� B

\diagram

A\rtwocell^f_g &B\\

\enddiagram

A

f

##
✤✤ ✤✤
�� α

;;

h

✤✤ ✤✤
�� β

//
g B

\diagram

A\ruppertwocell^f{\alpha}

\rlowertwocell_h{\beta}

\rto_(.35)g & B\\

\enddiagram

These categorical diagrams frequently having a
matrix-like layout, as with commutative diagrams. To
facilitate this there are control sequences of the form:
\rtwocell , \ultwocell , \xtwocell , . . . analogous
to the names defined in xyv2 for use in diagrams pro-
duced using xymatrix. As this involves the defini-
tion of 21 new control sequences, many of which may
never be used, these are not defined immediately upon
loading xy2cell. Instead the user must first specify
\UseTwocells.

As in the second example above, just the upper or
lower curved arrow may be set using control sequences
of the form \..uppertwocell and \..lowertwocell.
These together with the \..compositemap family, in
which two abutting arrows are set with an empty object
at the join, allow for the construction of complicated
“pasting diagrams” (see figure 14 for an example).

The following initialise the families of control se-
quences for use in matrix diagrams.

\UseTwocells two curves
\UseHalfTwocells one curve
\UseCompositeMaps 2 arrows, end-to-end
\UseAllTwocells (all the above)

Alternatively 2-cells can be set directly inXY-pictures
without using the matrix feature. In this case the above
commands are not needed. This is described in §17.5.
Furthermore a new directional \dir{=>} can be used

to place an “Arrow” anywhere in a picture, after the
direction has been established appropriately. It is used
with all of the 2-cell types.

Labels are placed labels on the upper and lower ar-
rows, more correctly ‘anti-clockwise’ and ‘clockwise’,
using ^ and _. These are entirely optional with the
following token, or grouping, giving the contents of the
label. When used with \..compositemap the ^ and _

specify labels for the first and second arrows, respec-
tively.

Normally the label is balanced text, set in TEX’s
math mode, with \twocellstyle setting the style.
The default definition is given by . . .

\def\twocellstyle{\scriptstyle}

This can be altered using \def in versions of TEX or
\redefine in LATEX. However labels are not restricted
to being simply text boxes. Any effect obtainable using
the XY-pic kernel language can be set within an \xybox

and used as a label.

The position of a label can be altered by nudging

(see below). Although it is possible to specify multiple
labels, only the last usage of each of ^ and _ is actually
set, previous specifications being ignored.

Similarly a label for the central Arrow must be given,
after the other labels, by enclosing it within braces
{...}. An empty group {} gives an empty label; this
is necessary to avoid misinterpretation of subsequent
tokens.

17.2 Standard Options

The orientation of the central Arrow may be reversed,
turned into an equality, or omitted altogether. In each
case a label may still be specified, so in effect the Arrow
may be replaced by anything at all.

These effects are specified by the first token in the
central label, which thus has the form: {〈tok〉label}
where 〈tok〉 may be one of . . .

30

f3 ////

����

▼▼▼▼▼▼▼▼▼
f4

&&&&✌✌✌✌�

☛☛☛☛�	

❏❏❏❏❏❏❏❏❏
f5

%%%%
A

④④④④④④④④④

f1

==

❥❥❥❥❥❥❥❥❥❥
f2

55

✷✷✷✷
��

FF

▲▲▲▲▲▲▲▲▲

%%
g1 %%

ttttttttt

9999

f6 //// 66
g4

✤✤ ✤✤
��

✝✝✝✝✝✝✝

f7

CC

✽✽✽✽✽✽

f8
��
B✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

4444

❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭
g2 --

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
g3

66

Figure 14: Pasting diagram.

_ Arrow points clockwise
^ Arrow points anti-clockwise
= no tip, denotes equality

\omit no Arrow at all.

When none of these occurs then the default of _ is
assumed. If the label itself starts with one of these
characters then specify _ explicitly, or enclose the label
within a group {...}. See Extra Options 1, for more
values of 〈tok〉.

17.3 Nudging

Positions of all labels may be adjusted, as can the
amount of curvature for the curved arrows. The way
this is done is by specifying a “nudge” factor 〈num〉 at
the beginning of the label. Here 〈num〉 is a number
which specifies the actual position of the label in units
of \xydashl@ (the length of a single dash, normally
5pt) except with \..compositemap, see below. Move-
ment is constrained to the perpendicular bisector of the
line cp. When nudging the label for the central Arrow
it is the whole Arrow which is moved, along with its
label.
Curvature of the arrows themselves is altered by

a nudge of the form \..twocell〈num〉.... The sep-
aration of the arrows, along the bisector, is set to
be 〈num〉\xydashl@. When 〈num〉 is zero, that is
\..twocell<0>..., the result is a single straight ar-
row, its mid-point being the origin for nudging labels.
A negative value for 〈num〉 is also acceptable; but check
the orientation on the Arrow and which of ^ and _ cor-
respond to which component.
The origin for nudging labels is where the arrow

crosses the bisector. Positive nudges move the label
outwards while negative nudges move towards pc and
possibly beyond. The default position of a label is on
the outside, with edge at the origin.
The origin for nudging the Arrow is at the midpoint

of pc. A positive nudge moves in the clockwise direc-
tion. This will be the direction of the arrowhead, unless
it has been reversed using ^.

Labels on a \..compositemap are placed relative to
the midpoint of the component arrows. Nudges are in
units of 1pt. Movement is in the usualXY-pic above and
below directions, such that a positive nudge is always
outside the triangle formed by the arrows and line pc.

The special nudge value <\omit> typesets just the
Arrow, omitting the curved arrows entirely. When used
with labels, the nudge value <\omit> causes the follow-
ing label to be ignored.

Exercise 29: Give code to typeset figure 14.
Such code is relatively straight-forward, using “nudg-
ing” and \omit to help position the arrows, curves and
Arrows. It also uses an excursion, as described below
in the subsection Extra Options 3.

17.4 Extra Options

The following features are useful in non-mathematical
applications.

1. no Arrow

This is determined by special values for 〈tok〉 as the
first (or only) character in the central label, as in the
above description of the standard options.

’ arrowheads pointing clockwise;
‘ arrowheads pointing anti-clockwise;
" arrow tips on both ends;
! no tips at all.

The central Arrow is omitted, leaving symmetrically
placed curved connections with arrowheads at the spec-
ified ends. A label can be placed where the Arrow
would have been.
If a special arrowhead is specified using ~’{..} (see

Extra Options 2, below) then this will be used instead
of the standard \dir{>}.

Clouds

precipitation

!!

evaporation

aa H2O Oceans

31

Syntax Action

〈twocell〉 −→ 〈2-cell〉〈options〉〈Arrow〉 typeset 〈2-cell〉 with the 〈options〉 and 〈Arrow〉
〈2-cell〉 −→ \..twocell typeset two curved arrows

| \..uppertwocell typeset upper curved arrow only
| \..lowertwocell typeset lower curved arrow only
| \..compositemap use consecutive straight arrows

〈Arrow〉 −→ {〈tok〉〈text〉} specifies orientation and label
| {〈nudge〉〈text〉} adjust position, use default orientation
| {〈text〉} use default position and orientation

〈tok〉 −→ ^ | _ | = oriented anti-/clockwise/equality
| \omit no Arrow, default is clockwise
| ‘ | ’ | " | ! no Arrow; tips on two curved arrows as:

anti-/clockwise/double-headed/none

〈options〉 −→ 〈option〉〈options〉 list of optional modifications

〈option〉 −→ 〈empty〉 use defaults
| ^ 〈label〉 place 〈label〉 on the upper arrow
| _ 〈label〉 place 〈label〉 on the lower arrow
| 〈nudge〉 set the curvature, based on 〈nudge〉 value
| \omit do not set the curved arrows
| ! place \modmapobject midway along arrows
| ~ 〈what〉 { 〈object〉 } use 〈object〉 in place specified by 〈what〉

〈what〉 −→ 〈empty〉 set curves using the specified 〈object〉
| ^ | _ use 〈object〉 with upper/lower curve
| ‘ | ’ use 〈object〉 for arrow head/tail

〈label〉 −→ 〈text〉 | 〈nudge〉 〈text〉 set 〈text〉 displaced by 〈nudge〉
〈nudge〉 −→ <〈number〉> positions object along a fixed axis

| <\omit> do not typeset the object

Figure 15: 〈twocell〉s

32

\xymatrixcolsep{5pc}

\diagram

\relax\txt{Clouds }\rtwocell<10>

_{\hbox{\tiny evaporation }}

^{\hbox{\tiny precipitation }}

{’{\boldmath{H_2 O}}}

&\relax\txt{Oceans}\\

\enddiagram

Mathematics

theory

,,rr

experiment

22ll Physics

\xymatrixcolsep{5pc}

\diagram

\relax\txt{\llap{Math}ematics }\rtwocell

_{\hbox{\tiny experiment }}

^{\hbox{\tiny theory }}{"}

& \relax\txt{Physics} \\

\enddiagram

2. Changing Tips and Module Maps

The following commands are provided for specifying
the 〈object〉 to be used when typesetting various parts
of the twocells.

command default

\modmapobject{〈object〉} \dir{|}
\twocellhead{〈object〉} \dir{>}

\twocelltail{〈object〉} \dir{}

arrowobject{〈object〉} \dir{=>}

\curveobject{〈object〉}
\uppercurveobject{〈object〉} {}

\lowercurveobject{〈object〉} {}

These commands set the object to be used for all
subsequent 2-cells at the same level of TEX grouping.
\curveobject specifies both of the upper- and lower-
curve objects. For some of these there is also a way
to change the object for the current 2-cell only. This
requires a ~-〈option〉 which is described below, except
for the \..curveobject types, which are discussed in
Extra Options 4.

These effects are specified by placing options after
the
\..twocell control sequence, e.g. \rtwocelloptions
labels Each option is either a single token 〈tok〉,
or a ~〈tok〉 with a single argument: ~〈tok〉{arg}. Pos-
sibilities are listed in the following table, in which {..}

denotes the need for an argument.

\omit no arrows, Arrow and label only;
! place module-map indicator;

~’{..} change arrow-head to {..};
~‘{..} place/change tail on arrow(s);
~{..} change object used to set curves;
~^{..} use object {..} to set upper curve;
~_{..} use object {..} to set lower curve;

Here we discuss the use of !, ~’, ~‘ and \omit. The
description of ~^, ~_ and ~{..} is given in Extra Op-

tions 4.

The default module map indicator places a single
dash crossing the arrow at right-angles, located roughly
midway along the actual printed portion of the arrow,
whether curved or straight. This takes into account the
sizes of the objects being connected, thereby giving an
aesthetic result when these sizes differ markedly. This
also works with \..compositemap where an indicator
is placed on each arrow. The actual object can be
changed using \modmapobject.

Any of the standard XY-pic tips may be used for
arrow-heads. This is done using ~’{..}, for example
~’{\dir{>>}} gives double-headed arrows. Similarly
~‘{..} can be used to place an arrow-tail. Normally
the arrow-tail is , so is not placed; but if a non-empty
tail has been specified then it will be placed, using
\drop. No guarantee is offered for the desired result
being obtained when an arrow-tail is mixed with the
features of Extra Options 1.

P
⊗
M

((((✲

⊗
M ′

66 66✑ f S

\modmapobject{\objectbox{\otimes}}

\xymatrixcolsep{5pc}

\diagram

P\rtwocell~!~’{\dir{>>}}~‘{\dir{|}}

^{<1.5>M}_{<1.5>M’}{=f} & S \\

\enddiagram

3. Excursions

The syntax for the \x..twocell types and for
\xcompositemap is a little different to what might be
expected from that for \xto, \xline, etc. For example,

\xtwocell[〈hop〉]{〈displace〉}...
connects to the 〈pos〉 displaced by 〈displace〉 from the
relative cell location specified by 〈hop〉. The displace-
ment can be any string of valid XY-pic commands, but
they must be enclosed within a group {...}. When
the cell location is required, a null grouping {} must

be given.

33

When used with the <\omit> nudge, such excursions
allow a labelled Arrow to be placed anywhere within an
XY-pic diagram; furthermore the Arrow can be oriented
to point in any direction.

4. Fancy curves

By specifying \curveobject an arbitrary object may
be used to construct the curved arrows. Indeed with a
\..twocell different objects can be used with the up-
per and lower curves by specifying \uppercurveobject
and \lowercurveobject.
These specifications apply to all 2-cells subsequently

constructed at the same level of TEX grouping. Alter-
natively using a ~-option, as in Extra Options 2, allows
such a specification for a single 2-cell or curved part.
Objects used to construct curves can be of two types.

Either a single 〈object〉 is set once, with copies placed
along the curve. Alternatively a directional object can
be aligned with the tangent along the curve. In this
case use a specification takes the form:
\curveobject{〈spacer〉~**〈object〉}.

Here 〈spacer〉 may be any 〈object〉 of non-zero size.
Typically it is empty space, e.g. +〈dimen〉{}.

Exercise 30: Give code to typeset the following di-
agrams.

FUn
??

???????????

◦◦◦◦◦◦◦◦◦◦◦◦
◦◦

& gaMES

Ground
State

99 88 77
66 55 55 44

33 22 11 11 00 // .. -- -- ,, ++ **)))) (('' && %%

continuous power

eeee gggg iiii jjjj llll mmmm oooo qqqq rrrr tttt uuuu wwww
yyyy

pulsed emission

NiCdgfed`abc_^]\XYZ[Excited
State

17.5 2-cells in general XY-pictures

Two-cells can also be set directly within anyXY-picture,
without the matrix feature, using either \drop or
\connect.

\def\myPOS#1{\POS}\def\goVia#1{%

\afterPOS{\connect#1\myPOS}}

\xy

+{A}="A",+<1cm,1.5cm>+{B}="B",

+<2.0cm,0pt>*+{C}="C",

+<1cm,-1.5cm>*+{D}="D",

"A";\goVia{\uppertwocell^\alpha{}}"B"{}

;\goVia{\twocell^\zeta_\xi{\gamma}}"C"{}

;\goVia{\compositemap{}}"D"{},

"A";\goVia{\lowertwocell{}}"D"{}

\endxy

A

B C

D

α

11
❏❏❏❏ !)

ζ
''

ξ

77
✤✤ ✤✤
�� γ ❘❘❘❘❘

((

✤ ✤
✤ ✤
✤

��

ttttv~

88✤✤ ✤✤
��

The code shown is a compact way to place a chain
of 2-cells within a picture. It illustrates a standard
technique for using \afterPOS to find a 〈pos〉 to be
used for part of a picture, then subsequently reuse it.
Also it is possible to use \drop or 〈decor〉s to specify
the 2-cells, giving the same picture.

\xy *+{A}="A",+<1cm,1.5cm>*+{B}="B",

+<2cm,0pt>*+{C}="C",

+<1cm,-1.5cm>*+{D}="D",

"A";"B"\uppertwocell^\alpha{}

\POS"B";"C"

\twocell^\zeta_\xi{\gamma}\POS"C";

\afterPOS{\drop\compositemap{}}"D"

{}\POS "A";

\afterPOS{\drop\lowertwocell{}}"D"

\endxy

The \connect variant is usually preferable as this
maintains the size of the object at c, while the \drop

variant leaves a rectangular object having p and c on
opposite sides.

18 Matrix feature

Vers. 2.12 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{matrix}

This option implements “XY-matrices”, i.e., matrices
where it is possible to refer to the entry objects by
their row/column address. We first describe the gen-
eral form ofXY-matrices in §18.1, then in §18.2 we sum-
marise the new 〈coord〉inate forms used to refer to en-
tries. In §18.3 we explain what parameters can be set
to change the spacing and orientation of the matrix,
and in §18.4 we explain how the appearance of the en-
tries can be changed.

18.1 XY-matrices

The fundamental command of this feature is the com-
mand \xymatrix{. . .} that reads a matrix of entries in
the generic TEX row&column format, i.e., where rows
are separated with \\ and contain columns separated
with &. Thus a matrix with maxrow rows and maxcol

34

columns where each entry contains row,col is entered
as

\xymatrix{

1,1 & 1,2 & · · · 1,maxcol \\

2,1 & 2,2 & 2,maxcol \\
...

. . .

maxrow,1 & maxrow,2 & maxrow,maxcol }

(TEXnically the & character represents any ‘alignment
tab’, i.e., character with category code 4).
A 〈matrix〉 can appear either in an XY-picture (as
〈decor〉) or “stand-alone”.
The points where \xymatrix is different from

ordinary matrix constructions (like plain TEX’s
\matrix{. . . } and LATEX’s array environment) are

• arbitrary XY-pic 〈decor〉ations may be specified in
each entry and will be interpreted in a state where
c is the current entry,

• the entire matrix is an object itself with reference
point as the top left entry, and

• a progress message “<xymatrix rowsxcols size>”
is printed for each matrix with rows × cols entries
and XY-pic complexity size (the number of primi-
tive operations performed).

• Entries starting with a * are special (described
in §18.4)6, so use {*} to get a *.

For example,

$$\xy

\xymatrix{A&B\\C&D}

\drop\frm{-}

\drop\cir<8pt>{}

\endxy$$

will typeset

A B

C D

8?9>:=;<
In fact entries of one matrix may refer to entries of
another by using the 〈pos〉 save mechanism:

A B

C D

❴ ❴ ❴ ❴ ❴✤
✤
✤
✤
✤

✤
✤
✤
✤
✤❴ ❴ ❴ ❴ ❴

A′ B′

C′ D′

❴ ❴ ❴ ❴ ❴ ❴✤
✤
✤
✤
✤

✤
✤
✤
✤
✤❴ ❴ ❴ ❴ ❴ ❴

was typeset (using the ‘frame’ extension) by

$$\xy

6In general it is recommended that entries start with a non-
expanding token, i.e., an ordinary (non-active) character, {, or
\relax.

\xymatrix {

A\POS="A" & B\POS="B" \\

C\POS="C" & D\POS="D" }

\POS*\frm{--}

\POS-(10,3)

\xymatrix {

A’\POS;"A"**\dir{.}

& B’\POS;"B"**\dir{.} \\

C’\POS;"C"**\dir{.}

& D’\POS;"D"**\dir{.} }

\POS*\frm{--}

\endxy$$

Bug: Matrices cannot be nested.

18.2 New coordinate formats

it is possible within entries to refer to all the entries of
the XY-matrix using the following special 〈coord〉inate
forms:

"r,c" Position and extents of en-
try in row r, column c (top
left is "1,1")

[∆r,∆c] ∆r rows below and ∆c
columns right of current en-
try

[〈hop〉*] entry reached by the
〈hop〉s; each 〈hop〉 is one of
dulr describing one ‘move’
to a neighbor entry

So the current entry has the synonyms [0,0], [], [rl],
[ud], [dudu], etc.
These forms are useful for defining diagrams where

the entries are related, e.g.,

A

�O
�O
�O

❅❅❅❅❅❅❅

B C

was typeset by

$$\xy

\xymatrix{

A \POS[];[d]**\dir{~},

[];[dr]**\dir{-} \\

B & C \POS[];[l]**\dir{.} }

\endxy$$

If an entry outside the XY-matrix is referenced then
an error is reported.

18.3 Spacing and rotation

The default spacing distances between rows and
columns are called rowsep and colsep. They can be

35

changed from the default 2pc by two special commands
similar to the ones for the defaults in the kernel:

\xymatrixrowsep 〈add op〉 {〈dimen〉}
\xymatrixcolsep 〈add op〉 {〈dimen〉}

The spacing around each object can also be changed
through modifiers as explained in the following section.
An entire matrix can be rotated by adding a rota-

tion prefix between the \xymatrix command and the
opening {:

@〈direction〉

This will set the orientation of the rows to 〈direction〉
(the default corresponds to @r).
Note: Rotation is experimental and the spacing of

a rotated matrix may change in future versions.

Exercise 31: How did the author typeset the follow-
ing matrix?

A(/).*-+, ⑧⑧⑧⑧⑧

❄❄❄❄❄

B(/).*-+,
C(/).*-+, D(/).*-+,

Hint : It is a 2 × 2 matrix and the author
used \entrymodifiers = {[o]} and \everyentry =

{\drop\cir{}} as explained in the next section.

18.4 Entries

The object 〈modifier〉s used for the default entries can
be changed from the default ‘!C +=<objectwidth, ob-

jectheight> +<2 × objectmargin>’ (with the effect of
centering the object, forcing it to have at least the size
objectwidth times objectheight and finally add the ob-

jectmargin) to all sides, by

\entrymodifiers={ 〈stuff〉 }

The appearance of a single entry can be modified by
entering it as

* 〈object〉 〈decor〉

This makes the particular entry ignore the entry mod-
ifiers and typeset as a kernel object with the same ref-
erence point as the (center of) the default object would
have had.

Exercise 32: Typeset the following diagram:

A×B ///A

��
/B

B

��
×A

A //
B×

B ×A

Finally, \everyentry is used to setup 〈decor〉 that
should be inserted before everything else in each entry.
Initially it is empty but

\everyentry={ 〈decor〉 }

will insert 〈decor〉 first in each entry. For example,

\everyentry={\drop\cir{}}

\xy\xymatrix{

A \POS[];[r]**\dir{~} & B

}\endxy

will typeset

A(/).*-+, /o/o/o B07162534
Exercise 33: How did the author typeset the follow-
ing diagram?

:
root ++❲❲❲❲

• EDBC
oo

• EDBC@A
GF //

1

Hints : The arrow feature was used to make the bending
arrows and the frame extension for the frames around
each cell.

19 Graph Combinator feature

Vers. 2.12 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{graph}

This option implements ‘XY-graph’, a special combina-

toric drawing language suitable for diagrams like flow
charts, directed graphs, and various forms of trees. The
base of the language is reminiscent of the PIC [4] lan-
guage because it uses a notion of the ‘current location’
and is based on ‘moves’. But the central construction
is a ‘map’ combinator that is borrowed from functional
programming.

XY-graph make use of facilities of the ‘arrow’ feature
option which is therefore required.

Figure 16 summarises the syntax of a 〈graph〉 with
notes below. A 〈graph〉 can appear either in an XY-
picture (as 〈decor〉) or “stand-alone”.

Notes

19a. A move is to establish a new current node.

36

Syntax Action

\xygraph{〈graph〉} typeset 〈graph〉
〈graph〉 −→ 〈step〉* interpret 〈step〉s in sequence

〈step〉 −→ 〈node〉 move19a to the 〈node〉
| - 〈node〉 〈labels〉 draw19b line to 〈node〉, with 〈labels〉
| :〈arrow〉 〈node〉 〈labels〉 draw19b 〈arrow〉 to 〈node〉, with 〈labels〉
| (〈list〉) map19c current node over 〈list〉

〈node〉 −→ [〈move〉] new node 〈move〉d relative to current

| "〈id〉" previously saved19d node

| ? currently mapped19c node
| ! 〈escape〉 interpret material in another mode

| 〈node〉 〈it〉 〈node〉 with 〈it〉 typeset and saved19d there

| 〈node〉 = "〈id〉" 〈node〉 saved19d as "〈id〉"
〈move〉 −→ 〈hop〉* 〈hop〉s19e (dulr) from current node

〈list〉 −→ 〈graph〉 , 〈list〉 | 〈graph〉 list of subgraphs19c

〈escape〉 −→ { 〈pos〉 〈decor〉 } perform 〈pos〉 〈decor〉19f
| M 〈matrix〉 insert 〈matrix〉19g
| P 〈matrix〉 insert 〈polygon〉19i

Figure 16: 〈graph〉s

19b. To draw something is simply to draw a line or the
specified 〈arrow〉 from the current node to the spec-
ified target node. The target then becomes the cur-
rent node. All the features of arrows as described
in §16 can be used, in particular arrows can be
labelled and segmented, but with the change that
〈path-pos〉 means 〈node〉 as explained in note §16e.

19c. To map over a list is simply to save the current
node and then interpret the 〈list〉 with the follow-
ing convention:

• Start each element of the list with the cur-
rent node as saved and p as the previous list
element, and

• let the ? 〈node〉 refer to the saved current
node explicitly.

19d. Typeset 〈it〉 and make it the current node. Also
saves 〈it〉 for later reference using "〈id〉": if 〈it〉 is
a simple letter, or digit, then just as "〈it〉"; if 〈it〉
is of the form {text} or *. . . {text} then as "text".

With the = addition it is possible to save explicitly
in case several nodes have the same text or a node
has a text that it is impractical to use for reference.

Exercise 34: How did the author typeset this?

A A
((

A
((

ff

19e. Moving by a series of hops is simply mov-
ing in a grid as the sequence of dulr (for
down/up/left/right) indicates. The grid is a stan-
dard cartesian coordinate system with 3pc unit
unless a base "graphbase" is defined or the cur-
rent base is redefined using ! with an appropriate
〈pos〉ition using : and :: as described in note 3d.

To Do: Many more moves should be allowed, in
particular these should be available: (1) ‘until per-
pendicular to . . . ’ and (2) ‘until intercepts with
. . . ’.

19f. This ‘escapes’ into the XY-pic kernel language and
interprets the 〈pos〉 〈decor〉. The current node is
then set to the resulting c object and the grid from
the resulting base.

The effect of the 〈pos〉 〈decor〉 can be com-
pletely hidden from XY-graph by entering it as
{\save. . . \restore}.

19g. Note: This only works when the ‘matrix’ feature
has also been loaded. It inserts a node consisting

37

of the 〈matrix〉 which must have the usual form
(see §18 for the details):

〈rotation〉 { 〈rows and columns〉 }

Within the matrix the following two control se-
quences are specially defined: \: is defined as an
alias for \ar and \="〈id〉" will save the entry as
"〈id〉" (\everyentry is used for these).

Finally the grid is set as the top left ‘square’ of the
matrix, i.e., with [d] and [r] adjusted as they
work in the top left entry (so [dr] immediately
after the matrix will work as expected, e.g., make
the center of "2,2" the current node, but others
might not, e.g., [rr] will not necessarily place the
current node on top of "1,3".

19h. Note: This only works when the ‘polygon’ fea-
ture has also been loaded. It inserts a node con-
sisting of the 〈polygon〉 which must have the usual
form (see §20 for the details).

19i. It is possible to insert a 〈polygon〉 in a graph pro-
vided the poly option described in §20 has been
loaded: it will have its center on top of the current
node and default radius as the 〈hop〉 base size.

The canonical diagram example illustrates most of
the above:

\xygraph{

!M{ X \times_Z Y \="xy" \:[r]_p \:[d]^q

& X \="X" \:[d]_f \\

Y \="Y" \:[r]^g & Z }

[ul]U (? :@/^.5pc/ ^x "X" ,

? :@{-->} |-{(x,y)} "xy" ,

? :@/_.5pc/ _y "Y") }

typesets

X ×Z Y //
p

��
q

X

��
f

Y //g
Z

U

''

x

&&
(x,y)

▲▲

▲▲

""

y

20 Polygon feature

Vers. 2.12 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{poly}

This feature provides a means for specifying the lo-
cations of vertices for regular polygons, with 3 to 12
sides. Polygons can be easily drawn and/or the vertex
positions used to constuct complex graphics within an
XY-picture. Many non-regular polygons can be speci-
fied by setting a non-square basis.

A polygon is most easily specified using . . .

\xypolygon〈number〉{} with 〈number〉 sides;
\xypolygon〈number〉{〈tok〉} 〈tok〉 at vertices;
\xypolygon〈number〉{〈object〉}

with a general 〈object〉 at each vertex;

Here 〈number〉 is a sequence of digits, giving the num-
ber of sides. If used within an \xy. . . \endxy environ-
ment then the polygon will be centred on c, the current
〈pos〉. However an \xypolygon can be used outside
such an environment, as “stand-alone” polygon; the
whole picture must be specified within the \xypolygon
command.
In either case the shape is obtained by spacing ver-

tices equally around the “unit circle” with respect to
the current basis. If this basis is non-square then the
vertices will lie on an ellipse. Normally the polygon,
with at most 12 vertices, is oriented so as to have a
flat base when specified using a standard square basis.
With more than 12 vertices the orientation is such that
the line from the centre to the first vertex is horizon-
tal, pointing to the right. Any other desired orientation
can be obtained, with any number of vertices, by using
the ~={. . . } as described below.

The general form for \xypolygon is . . .

\xypolygon〈number〉"〈prefix〉"{〈switches〉. . .}

where the "〈prefix〉" and 〈switches〉 are optional. Their
uses will be described shortly.

A \xypolygon establishes positions for the vertices
of a polygon. At the same time various things may
be typeset, according to the specified 〈switches〉. An
〈object〉 may be dropped at each vertex, “spokes”
drawn to the centre and successive vertices may be con-
nected as the polygon’s “sides”. Labels and breaks can
be specified along the spokes and sides.
Each vertex is automatically named: "1", "2", . . . ,

"〈number〉" with "0" as centre. When a 〈prefix〉 has
been given, names "〈prefix〉0", . . . , "〈prefix〉〈number〉"
are used instead. While the polygon is being con-
structed the macro \xypolynum expands to the number
of sides, while \xypolynode expands to the number of
each vertex, spoke and side at the time it is processed.
This occurs in the following order: vertex 1, spoke 1,
vertex 2, spoke 2, side 1, vertex 3, spoke 3, side 2, . . . ,
vertex n, spoke n, side n−1, side n where the final side
joins the last vertex to the first.
The macro \xypolyname holds the name of the poly-

gon, which is 〈prefix〉 if supplied. In this case the value
of \xypolynum is also stored as \〈prefix〉NUMSIDES, ac-
cessible outside the polygon.
As stated above, a polygon with up to 12 vertices

is oriented so as to have a flat base, when drawn us-
ing a standard square basis. Its vertices are numbered

38

in anti-clockwise order, commencing with the one at
horizontal-right of centre, or the smallest angle above
this (see example below). With more than 12 vertices
then vertex "1" is located on the horizontal, extending
to the right from centre (assuming a standard square
basis). By providing a switch of the form ~={〈angle〉}
then the vertex "1" will be located on the unit circle
at 〈angle〉◦ anti-clockwise from “horizontal” — more
correctly, from the X-direction in the basis to be used
when setting the polygon, which may be established
using a ~:{. . . } switch.

•

•✌✌✌✌✌✌✌✌✌

•

✶✶✶✶✶✶✶✶✶

1

2 3

0 '!&"%#$ '!&"%#$ '!&"%#$
✌✌✌

✶✶✶
 '!&"%#$✶✶✶ '!&"%#$✌✌✌

 '!&"%#$✌✌✌✶✶✶ '!&"%#$✶✶✶ ✌✌✌

1

23

4

5 6

0
1

2 ✶✶
3 ❙❙

4
❦❦

5
✌✌

6

✪✪

7

❉❉
8

9③③

✙✙

Exercise 35: Give code to typeset these.

One important use of 〈prefix〉 is to allow the vertices
of more than one polygon to be accessed subsequently
within the same picture. Here are some examples of
this, incorporating the ~:{. . .} switch to perform sim-
ple rescalings. Firstly the edges of a dodecahedron as
a planar graph:

❍❍❍❍❍ ✈✈✈✈✈

✮✮✮✮✮✕✕✕✕✕

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈

✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮ ✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕✕

✐✐✐✐

✥✥
✥✥

✥✥
✥

❤❤❤❤❤❤❤ ❱❱❱❱❱❱❱

✣✣✣✣✣✣✣

❯❯❯❯

✠✠✠✠✠✠✠

❚❚❚❚❚❚❚✟✟✟✟

✽✽✽✽✽✽✽✝✝✝✝✝✝✝

✻✻✻✻❥❥❥❥❥❥❥

✺✺✺✺✺✺✺ ✐✐✐❯❯❯

✟✟✟ ✻✻✻

\xy /l1.5pc/:,{\xypolygon5"A"{}},

{\xypolygon5"B"{~:{(1.875,0):}~>{}}},

{\xypolygon5"C"{~:{(-2.95,0):}~>{}}},

{\xypolygon5"D"{~:{(-3.75,0):}}},

{"A1"\PATH~/{**\dir{-}}’"B1"’"C4"’"B2"},

{"A2"\PATH~/{**\dir{-}}’"B2"’"C5"’"B3"},

{"A3"\PATH~/{**\dir{-}}’"B3"’"C1"’"B4"},

{"A4"\PATH~/{**\dir{-}}’"B4"’"C2"’"B5"},

{"A5"\PATH~/{**\dir{-}}’"B5"’"C3"’"B1"},

"C1";"D1"**\dir{-},"C2";"D2"**\dir{-},

"C3";"D3"**\dir{-},"C4";"D4"**\dir{-},

"C5";"D5"**\dir{-} \endxy

Next a hexagonal pyramid, a rectangular box and an
octahedral crystal specified as a triangular anti-prism.
Notice how the ~:{. . . } switch is used to create non-
square bases, allowing the illusion of 3D-perspective in
the resulting diagrams:

✴✴✴✴✴✴✴✴✴

✬✬✬✬✬✬✬❍❍❍

✌✌✌✌✌✌✌❭❭❭❭❭

☎☎☎☎☎☎☎☎☎♠♠♠

✒✒✒✒✒✒✒✒✒❍❍❍

✩✩✩✩✩✩✩✩✩❭❭❭❭❭ ♠♠♠ ✆✆✆✆✆✆✆✾✾✾✾✾✾✾

✍✍✍✍✍✍❁❁❁❁❁❁❁

\xy/r2pc/: ="A", +(.2,1.5)="B","A",

{\xypolygon6{~:{(1,-.1):(0,.33)::}

~<>{;"B"**\dir{-}}}}\endxy

\quad \xy /r2pc/:

{\xypolygon4"A"{~:{(0,.7)::}}},+(.7,1.1),

{\xypolygon4"B"{~:{(.8,0):(0,.75)::}}},

"A1";"B1"**\dir{.},"A2";"B2"**\dir{.},

"A3";"B3"**\dir{.},"A4";"B4"**\dir{.}

\endxy\quad \xy /r2pc/:

{\xypolygon3"A"{~:{(0,.7)::}}},+(.7,1.1),

{\xypolygon3"B"{~:{(-.85,0):(-.15,.8)::}}}

,"A1"\PATH~/{**\dir{.}}’"B2"’"A3"’"B1"

’"A2"’"B3"’"A1" \endxy

Vertex object: Unless the first character is ~, signi-
fying a “switch”, then the whole of the braced material
is taken as specifying the 〈object〉 for each vertex. It
will be typeset with a circular edge using \drop[o]...,
except when there is just a single token 〈tok〉. In this
case it is dropped as \drop=0{〈tok〉}, having zero size.
An object can also be dropped at each vertex using the
switch ~*{. . . }, in which case it will be circular, with
the current objectmargin applied.
The next example illustrates three different ways of

specifying a \circ at the vertices.

◦
◦✶✶✶

◦▼▼▼◦◦qqq

◦✌✌✌

◦
◦✶

✶✶

◦▼▼▼
◦ ◦qqq

◦✌✌✌

◦
◦✈✈✈✈✈

◦✕✕✕✕✕

◦✮✮✮✮✮
◦❍❍❍❍❍◦
◦✈✈✈✈✈

◦✕✕✕✕✕

◦
✮✮✮✮✮

◦❍❍❍❍❍
◦❧❧❧❧ ❧❧❧❧

◦
✒✒✒✒

✒✒✒✒

❄❄◦✱✱✱✱

✱✱✱✱◦ ❘❘❘❘
❘❘❘❘

⑧⑧

◦ ❧❧❧❧❧❧❧❧

◦✒✒✒✒
✒✒✒✒

❄❄
◦

✱✱✱✱

✱✱✱✱
◦❘❘❘❘

❘❘❘❘

⑧⑧

\xy/r2pc/: {\xypolygon12{\circ}},

+/r5pc/,{\xypolygon10{~<{-}~>{}{\circ}}},

+/r5pc/,{\xypolygon8{~*{\circ}~<=}}\endxy

Switches
The allowable switches are given in the following table:

~:{. . . } useful for rescaling.
~*{〈object〉} 〈object〉 at each vertex.
~={〈angle〉} align first vertex.
~<{. . . } directional for “spokes”;
~<<{〈arrow〉} use 〈arrow〉 for spokes;
~<>{. . . } labels & breaks on spokes.
~>{. . . } directional for “sides”;
~><{〈arrow〉} use 〈arrow〉 for sides;
~>>{. . . } labels & breaks on sides.

39

Using ~<<{〈arrow〉} or ~><{〈arrow〉} is most ap-
propriate when arrowheads are required on the sides
or spokes, or when labels/breaks are required. Here
〈arrow〉 is as in figure 13, so it can be used simply to
specify the style of directional to be used. Thus ~<<{}
sets each spoke as a default arrow, pointing outwards
from the centre; ~<<{@{-}} suppresses the arrowhead,
while ~><{@{}} uses an empty arrow along the sides.
Labels and breaks are specified with ~<>{. . . } and
~>>{. . . }, where the {. . . } use the notation for a
〈label〉, as in figure 12.
When no tips or breaks are required then the

switches ~<{. . .} and ~>{. . . } are somewhat faster,
since less processing is needed. Labels can still be spec-
ified with ~<>{. . . } and ~>>{. . . }, but now using the
kernel’s 〈place〉 notation of figure 1. In fact any ker-
nel code can be included using these switches. With
~<> the current p and c are the centre and vertex re-
spectively, while for ~>> they are the current vertex
and the previous vertex. (The connection from vertex
"〈number〉" to vertex "1" is done last.) The pyramid
above is an example of how this can be used. Both
~<{. . . } and ~<<{〈arrow〉} can be specified together,
but only the last will actually be used; similarly for
~>{. . . } and ~><{〈arrow〉}.

❡❡❡❡❡❡❡❡❡❡❡❡❡

✿✿✿✿✿✿✿✿✿✿✿✿✿
✓✓✓✓✓✓✓✓✓✓✓✓✓

❭ ❭ ❭ ❭ ❭ ❭

✜
✜

✜
✜

✜
✜

❭❭❭❭❭❭

✜
✜

✜
✜

✜
✜

❲❲❲❲❲❲❲❲❲

☛☛☛☛☛☛☛☛☛

✿✿✿✿✿✿✿✿✿

❧❧❧❧❧❧❧❧❧

✦✦✦✦✦✦✦✦✦

❙ ❙ ❙ ❙
③

③
③

③

✪
✪

✪
✪

❙❙❙❙
③

③
③

③

✪
✪

✪
✪

❏❏❏❏❏
❴❴❴❴❴

sssss

✏✏✏✏✏

★★★★★

✿✿✿✿✿

❯❯❯❯❯ ❤❤❤❤❤

✂✂✂✂✂

✚✚✚✚✚

✲✲✲✲✲
A

❭✜②②②②

②②②

B

⑧❄

gg α1PPPP
C

✧❜❊❊❊❊

❊❊❊
ww
α2

♥♥♥♥

D
❑☛❢❢❢❢

❢❢❢��
α3

✘✘✘✘

E

❦✰✏✏✏✏

✏✏✏
��α4

✾✾✾✾

F

✓❙✳✳✳✳

✳✳✳

//
α5

G
✹t❳❳❳❳

❳❳❳
BB
α6

✆✆✆✆

SS
α7

✫✫✫✫

\def\alphanum{\ifcase\xypolynode\or A

\or B\or C\or D\or E\or F\or G\or H\fi}

\xy/r3pc/: {\xypolygon3{~={40}}},

{\xypolygon4{~={40}~>{{--}}}},

{\xypolygon5{~={40}}},

{\xypolygon6{~={40}~>{{--}}}},

{\xypolygon11{~={40}}},

{\xypolygon50{~={40}~>.}}, +/r8pc/,

{\xypolygon7{~<<{@{-}}~><{}

~<>{|*\dir{x}}~*{\alphanum}

~>>{_{\alpha_\xypolynode^{}}}}}

\endxy

Use of the ~={. . . } switch was described earlier.
When using the ~:{. . . } more can be done than just
setting the base. In fact any kernel code can be sup-
plied here. It is processed prior to any other part of
the polygon. The graphics state has c at the centre of
the polygon, p at the origin of coordinates within the
picture and has basis unchanged from what has pre-
viously been established. The current point c will be
reset to the centre following any code interpreted using

this switch.
A further simplification exists for sides and spokes

without 〈arrow〉s. If 〈tok〉 is a single character then
~>〈tok〉, ~>{〈tok〉}, ~>{{〈tok〉}} all specify the direc-
tional \dir{〈tok〉}; similarly with the ~< switch. On
the other hand, compound directionals require all the
braces, e.g. ~>{{--}} and ~>{2{.}}.

After all switches have been processed, remaining
tokens are used to specify the 〈object〉 for each vertex.
Such tokens will be used directly after a \drop, so can
include object 〈modifier〉s as in figure 3. If an 〈object〉
has already been specified, using the ~* switch, then
the following message will be written to the TEX log:

XY-pic Warning: vertex already specified,

discarding unused tokens:

with tokens at the end indicating what remains unpro-
cessed. Similarly extra tokens before the {. . . } gener-
ate a message:

XY-pic Warning: discarding unused tokens:

Nested Polygons
When \xypolygon is specified within a ~<>{. . . }
or ~>>{. . . } switch for another polygon, then the
inner polygon inherits a name which incorporates
the number of the part on which it occurs, as
given by xypolynode. This name is accessed using
\xypolyname. In the following example the inner poly-
gon is placed using ~<> in order to easily adjust its
orientation to the outward direction of the spokes.

1GFED@ABC
1, 1

1, 2
⑧⑧⑧⑧⑧

1, 3❄❄❄❄❄

1, 4
⑧⑧⑧⑧⑧

❄❄❄❄❄2GFED@ABC 2, 1

2, 2❄❄❄❄❄

2, 3
⑧⑧⑧⑧⑧

2, 4

❄❄❄❄❄ ⑧⑧⑧⑧⑧

3GFED@ABC3, 1

3, 2
⑧⑧⑧⑧⑧

3, 3

❄❄❄❄❄ 3, 4
⑧⑧⑧⑧⑧

❄❄❄❄❄

4GFED@ABC4, 1

4, 2

❄❄❄❄❄ 4, 3
⑧⑧⑧⑧⑧

4, 4❄❄❄❄❄⑧⑧⑧⑧⑧

\xypolygon4{~:{/r6pc/:}

~<>{*\frm<10pt>{o}\xypolygon4{~:{/-2.5pc/:}

~*{\xypolyname\xypolynode}}}

[o]=<7pc>{\xypolynode}}

Notice how nested polygons inherit names "1,1",
"1,2", . . . , "4,1", . . . , "4,4" for their vertices. If

40

a 〈prefix〉 is supplied at the outermost level then the
names become: "〈prefix〉i, j". Specifying a 〈prefix〉 for
the inner polygon overrides this naming scheme. The
same names may then be repeated for each of the inner
polygons, allowing access afterwards only to the last—
possibly useful as a memory saving feature when the
vertices are not required subsequently.

Four levels of nesting gives a quite acceptable “Sier-
pinski gasket”. The innermost triangle is provided by
\blacktriangle from the AMS symbol font msam5, at
5-point size. Further levels can be achieved using the
PostScript backend, otherwise line segments become
too small to be rendered using XY-fonts.

N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶

N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶

N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶

N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶

N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶ N
N✌✌N

✶✶
N
N✌✌N

✶✶ N
N✌✌N

✶✶

\def\objectstyle{\scriptscriptstyle}

\xypolygon3{~:{/r5.2pc/:}

~>{}~<>{?\xypolygon3"a"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"b"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"c"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"d"{~:{(.5,0):}

~<>{?*!/d.5pt/=0{\blacktriangle}}

}} }} }} }} }

Note the use of naming in this example; when process-
ing this manual it saves 13,000+ words of main mem-
ory and 10,000+ string characters as well as 122 strings
and 319 multi-letter control sequences.

21 Version 2 Compatibility fea-

ture

Vers. 2.12 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{v2}

This option provides backwards compatibility with
XY-pic version 2: diagrams written according to the
“Typesetting diagrams with XY-pic: User’s Man-
ual” [13] should typeset correctly with this option
loaded

There are a few exceptions: the features described
in §21.1 below are not provided because they are not
as useful as the author originally thought and thus vir-
tually never used. And one extra command is provided
to speed up typesetting of documents with XY-pic ver-
sion 2 diagrams by allowing the new compilation func-
tionality on old diagrams.

The remaining sections list all the obsolete com-
mands and suggest ways to achieve the same things
using XY-pic 2.12, i.e., without the use of this option.
They are grouped as to what part of XY-pic replaces
them; the compilation command is described last.
Note: “version 2” is meant to cover all public re-

leases of XY-pic in 1991 and 1992, i.e., version 1.40
and versions 2.1 through 2.6. The published manual
cited above (for version 2.6) is the reference in case
of variations between these versions, and only things
documented in that manual will be supported by this
option!

21.1 Unsupported incompatibilities

Here is a list of known incompatibilities with version 2
even when the v2 option is loaded.

• Automatic ‘shortening’ of arrow tails by |<< break
was a bug and has been ‘fixed’ so it does not work
any more. Put a |<\hole break before it.

• The version 2.6 * position operator is not avail-
able. Use the : and :: operators.

• Using t1;t2:(x,y) as the target of an arrow com-
mand does not work. Enclose it in braces, i.e.,
write

{t1;t2:(x,y)}

• The older \pit, \apit, and \bpit commands are
not defined. Use \dir{>} (or \tip) with variants
and rotation.

• The even older notation where an argument in
braces to \rto and the others was automatically
taken to be a ‘tail’ is not supported. Use the sup-
ported |<. . . notation.

If you do not use these features then your version 2
(and earlier) diagrams should typeset the same with
this option loaded except that sometimes the spacing
with version 2.12 is slightly different from that of ver-
sion 2.6 which had some spacing bugs.

21.2 Obsolete kernel features

The following things are added to the kernel by this
option and described here: idioms, obsolete positions,
obsolete connections, and obsolete objects. For each
we show the suggested way of doing the same thing
without this option:

Removed AMS-TEX idioms

Some idioms from AMS-TEX are no longer used by XY-
pic: the definition commands \define and \redefine,
and the size commands \dsize, \tsize, \ssize, and
\sssize. Please use the commands recommended for

41

your format—for plain TEX these are \def for the first
two and \displaystyle, \textstyle, \scriptstyle,
and \scriptscriptstyle for the rest. The v2 option
ensures that they are available anyway.
Version also 2 used the AMS-TEX \text and a (non-

object) box construction \Text which are emulated—
\text is only defined if not already defined, however,
using the native one (of AMS-TEX or AMS-LATEX or
whatever) if possible. Please use the \txt object con-
struction directly since it is more general and much
more efficient!

Obsolete state

In version 2 the available state dimensions had different
names: \cL, \cR, \cH, and \cD for \Lc, \Rc, \Uc, and
\Dc. These are made synonyms for the new names.

Obsolete position manipulation

In version 2 many things were done using individual
〈decor〉 control sequences that are now done using 〈pos〉
operators.

Version 2 positioning Replacement

\go〈pos〉 \POS;p,〈pos〉
\aftergo{〈decor〉}〈pos〉

\afterPOS{〈decor〉};p,〈pos〉
\merge \POS.p\relax

\swap \POS;\relax

\Drop{〈text〉} \drop+{〈text〉}

Obsolete connections

These connections are now implemented using direc-
tionals.

Version 2 connection Replacement

\none \connect h\dir{}

\solid \connect h\dir{-}

\Solid \connect h\dir2{-}

\Ssolid \connect h\dir3{-}

\dashed \connect h\dir{--}

\Dashed \connect h\dir2{--}

\Ddashed \connect h\dir3{--}

\dotted \connect h\dir{.}

\Dotted \connect h\dir2{.}

\Ddotted \connect h\dir3{.}

\dottedwith{〈text〉} \connect h{〈text〉}

Note how the ‘hidden’ specifier h should be used be-
cause version 2 connections did not affect the size of
diagrams.

Obsolete tips

These objects all have \dir-names now:

Version 2 tip Replacement

\notip \dir{}

\stop \dir{|}

\astop \dir^{|}

\bstop \dir_{|}

\tip \dir{>}

\atip \dir^{>}

\btip \dir_{>}

\Tip \dir2{>}

\aTip \object=<5pt>:(32,-1)\dir^{>}

\bTip \object=<5pt>:(32,+1)\dir_{>}

\Ttip \dir3{>}

\ahook \dir^{(}

\bhook \dir_{(}

\aturn \dir^{’}

\bturn \dir_{’}

The older commands \pit, \apit, and \bpit, are
not provided.

Obsolete object constructions

The following object construction macros are made ob-
solete by the enriched 〈object〉 format:

Version 2 object Replacement

\rotate(〈factor〉)〈tip〉
\object:(〈factor〉,〈factor〉){〈tip〉}

\hole \object+{}

\squash〈tip〉 \object=0{〈tip〉}
\grow〈tip〉 \object+{〈tip〉}
\grow<〈dimen〉>〈tip〉 \object+<〈dimen〉>{〈tip〉}
\squarify{〈text〉} \object+={〈text〉}
\squarify<〈dimen〉>{〈text〉}

\object+=<〈dimen〉>{〈text〉}

where rotation is done in a slightly different manner in
version 2.12 (it was never accurate in version 2).

21.3 Obsolete extensions & features

Version 2 had commutative diagram functionality cor-
responding to the frames extension and parts of the
matrix and arrow features. These are therefore loaded
and some extra definitions added to emulate commands
that have disappeared.

Frames

The version 2 frame commands are emulated us-
ing the frame extension (as well as the \dotframed,

42

\dashframed, and \rounddashframed commands
communicated to some users by electronic mail):

Version 2 object Replacement

\framed \drop\frm{-}

\framed<〈dimen〉> \drop\frm<〈dimen〉>{-}
\Framed \drop\frm{=}

\Framed<〈dimen〉> \drop\frm<〈dimen〉>{=}
\dotframed \drop\frm{.}

\dashframed \drop\frm{--}

\rounddashframed \drop\frm{o-}

Matrices

The \diagram 〈rows〉 \enddiagram command is pro-
vided as an alias for \xy\xymatrix{ 〈rows〉 }\endxy
centered in math mode and \LaTeXdiagrams changes
it to use \begin . . . \end syntax. v2 sets a special in-
ternal ‘old matrix’ flag such that trailing \\ are ignored
and entries starting with * are safe.
\NoisyDiagrams is ignored because the matrix fea-

ture always outputs progress messages.
Finally the version 2 \spreaddiagramrows and

\spreaddiagramcolumns spacing commands are emu-
lated using \xymatrixrowsep and \xymatrixcolsep:

Arrows

The main arrow commands of version 2 were the
\morphism and \definemorphism commands that
have been replaced by the \ar command.
v2 provides them as well as uses them to define

the version 2 commands \xto, \xline, \xdashed,
\xdotted, \xdouble, and all the derived commands
\dto, \urto, . . . ; the \arrow commands of the β-
releases of v3 is also provided.
Instead of commands like \rrto and \uldouble you

should use the arrow feature replacements \ar[rr] and
\ar@{=}[ul].
The predefined turning solid arrows \lltou, . . . ,

\tord are defined as well; these are now easy to do
with 〈turn〉s.

21.4 Obsolete loading

The v2 User’s Manual says that you can load XY-pic
with the command \input xypic and as a LATEX 2.09
‘style option’ [xypic]. This is made synonymous
with loading this option by the files xypic.tex and
xypic.sty distributed with the v2 option.

xypic.tex: This file (version 2.10) just loads the v2

feature.

xypic.sty: Loads xy.sty and the v2 feature.

21.5 Compiling v2-diagrams

In order to make it possible to use the new compilation
features even on documents written withXY-pic v2, the
following command has been added:

\diagramcompileto{ 〈name〉 } . . . \enddiagram

which is like the ordinary diagram command except
the result is compiled into a file 〈name〉.xyc. Note
that compilation is not quite safe in all cases!
There is also the following command that switches

on automatic compilation of all diagrams created with
the v2 \diagram . . . \enddiagram command:

\CompileAllDiagrams { 〈prefix〉 }

will apply \xycompileto{〈prefix〉n}{. . . } to each dia-
gram with n a sequence number starting from 1.
If for some reason a diagram does not work when

compiled then replace the \diagram command with
\diagramnocompile (or in case you are using the
LATEX form, \begin{diagramnocompile}), or use

\NoCompileAllDiagrams

\ReCompileAllDiagrams

where the last switches compilation back on.

Part IV

Backends

This part describes variant backends that support cus-
tomisation of the produced DVI files to particular out-
put devices. For each is indicated the described version
number, the author, and how it is loaded. Currently
there is only backend supporting output to Post-

Script devices.

22 PostScript backend

Vers. 2.12 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{ps}

XY-ps is a ‘back-end’ which provides XY-pic with the
ability to produce DVI files that use PostScript7

\specials for drawing rather than the XY-pic fonts.
In particular this makes it possible to print XY-pic

DVI files on systems which do not have the ability to
load the special fonts. The penalty is that the gen-
erated DVI files will only function with one particular

7PostScript is a registered Trademark of Adobe Systems,
Inc.

43

DVI driver program. Hence wheneverXY-ps is activated
it will warn the user:

XY-pic Warning: The produced DVI file
is not portable: It contains PostScript
\specials for 〈one particular〉 driver

A more complete discussion of the pros and cons of
using this backend is included below.

22.1 Choosing the DVI-driver

To activate the use of PostScript the user must spec-
ify one of the following command that selects the for-
mat of the \specials to be used:

\UsePSspecials {〈driver〉}
\NoPSspecials cancels PostScript
\UsePSspecials restores PostScript

The \UsePSspecials initially causes a special driver
file (see below) to be read. This file contains defini-
tions which are specific to the particular 〈driver〉. Note
that some drivers may not be able to support all of the
PostScript effects that can be requested from within
XY-pic. When an unsupported effect is encountered,
it is simply ignored. A message warning that the re-
quested effect is unavailable will be produced unless
too many such messages have already been issued.

Use of fonts is restored at any point by calling
\NoPSspecials, after which use of PostScript is re-
stored by using \UsePSspecials, without need of an
argument. This allows PostScript to be turned on
and off for individual diagrams, or for portions of a sin-
gle diagram. Use of these commands obeys normal TEX
scoping rules, so if \NoPSspecials or \UsePSspecials
is specified within an environment, the previous setting
will be restored upon leaving that environment.

For users of LATEX2ε, and presumably LATEX3 (when
it becomes available), the driver type will be inherited
from any corresponding PostScript option specified
with the \documentclass command, see [3, page 317].
The implicit \UsePSspecials will be executed at the
\begin{document} line; hence any \NoPSspecials

must occur after this to be effective.

The following table, which mimics the one in the
stated LATEX2ε reference, describes current support
for PostScript drivers: × denotes full support, for
all the features the driver can handle; ? denotes that
some features have not been tested, but may still work;
− denotes no support as yet. Please note the spelling,
which corresponds to the way the respective writers re-
fer to their own products within their own documenta-
tion. Alternative combinations of upper- and lowercase
letters are not guaranteed to work correctly.

〈driver〉 Description XY-ps
dvips Tomas Rokicki’s dvips ×
Textures Blue Sky Research’s Textures ×
OzTeX Andrew Trevorrow’s OzTEX ×
ln Digital Corp. printers −
dvitops James Clark’s dvitops ?
emtex Eberhard Matte’s em-TEX −
Other DVI-drivers may already work if they use con-

ventions similar to dvips, OzTEX or Textures. The
TEXnical documentation [11] in the file xyps.doc con-
tains instructions concerning how to make XY-ps work
with other drivers. To have another driver specifically
supported it is only necessary to inform the author of
its existence, how it handles \specials, and negotiate
with him a means for testing/verifying the implemen-
tation.
It should be possible to change 〈driver〉 up until such

time as a \special is actually used. This is to allow
users to switch from a system default. This ability is
new with version 2.9; any difficulties with this feature
should be reported to the author
The following lists the 〈driver〉s available, including

some experimental ones not mentioned above. The as-
sociated driver file is given in parentheses, along with
any special considerations needed when using them.

dvips for dvips (xyps-dvi.tex): This included file
(version 2.10) providesXY-ps support for the dvips
driver by Tomas Rokicki [10] (it has been tested
with dvips version 5.55a).

Textures for Textures (xyps-txt.tex):
This included file (version 2.10) provides XY-ps
support for the DVI driver of Textures.8 for
the Macintosh.9

OzTeX for OzTEX (xyps-oz.tex): This included file
(version 2.10) provides XY-ps support for the DVI
driver of OzTEX by Andrew Trevorrow.10

Bug: Colour support is not complete (see
INSTALL.OzTeX

Note: To use XY-pic effectively with OzTEX re-
quires changing several parameters. This is de-
scribed in the file INSTALL.OzTeX of the XY-pic
distribution.

dvitops for dvitops (xyps-dto.tex): This in-
cluded file (version 2.10) provides XY-ps support
for the dvitops DVI driver by James Clark.

Bug: This code has not been tested!

8Textures is a product of Blue Sky Research. XY-ps has been
tested on versions 1.5b and later; no guarantee is given for earlier
versions.

9Macintosh is a trademark of Apple Computer Inc.
10OzTEX v1.7 is a shareware implementation of TEX for

Macintosh available from many bulletin boards and ftp sites;
v1.5 and earlier versions were freeware. Email contact:
〈akt150@huxley.anu.edu.au〉.

44

dviwindo for dviwindo (xyps-wdo.tex): This in-
cluded file (version 2.10) provides XY-ps support
for the dviwindo DVI driver.

Bug: This code has not been tested!

dvipub for dvipub (xyps-pub.tex): This included
file (version 2.10) provides XY-ps support for the
dvipub DVI driver.

Bug: This code has not been tested!

Information to improve the abilities of these
drivers should be conveyed to the author. Printed
technical documentation or software would be the
most useful form, though e-mail concerning good
experiences would also be helpful. ©̈⌣

22.2 Why use PostScript.

At some sites users have difficulty installing the ex-
tra fonts used by XY-pic. The .tfm files can always be
installed locally but it may be necessary for the .pk

bitmap fonts (or the .mf METAFONT fonts) to be in-
stalled globally, by the system administrator, for print-
ing to work correctly. If PostScript is available then
XY-ps allows this latter step to be bypassed.

Note: with XY-ps it is still necessary to have the
.tfm font metric files correctly installed, as these con-
tain information vital for correct typesetting.

Other advantages obtained from using XY-ps are the
following:

• Circles and circle segments can be set for arbitrary
radii.

• Straight lines are straighter and cleaner.

• The range of possible angles of directionals is
greatly increased.

• Spline curves are smoother. True dotted and
dashed versions are now possible, using equally
spaced segments which are themselves curved.

• The PostScript file produced by a driver from
anXY-ps DVI file is in general significantly smaller
than one produced by processing an ‘ordinary’
DVI file using the same driver. One reason for this
is that no font information for the XY-pic fonts is
required in the PostScript file; this furthermore
means that the use ofXY-pic does not in itself limit
the PostScript file to a particular resolution.11

11Most TEX PostScript drivers store the images of characters
used in the text as bitmaps at a particular resolution. This
means that the PostScript file can only be printed without loss
of quality (due to bitmap scaling) at exactly this resolution.

• The latest version of XY-pic now enables special
effects such as variable line thickness, gray-level
and colour. Also, rotation of text and (portions
of) diagrams is now supported with some drivers.
Similarly whole diagrams can be scaled up or down
to fit a given area on the printed page. Future
versions will allow the use of regions filled with
colour and/or patterns, as well as other attractive
effects.

Some of the above advantages are significant, but
they come at a price. Known disadvantages of using
XY-ps include the following:

• A DVI file with specials for a particular Post-

Script driver can only be previewed if a pre-
viewer is available that supports exactly the same
\special format. A separate PostScript pre-
viewer will usually be required.

• The DVI files created using XY-ps lose their
“device-independence”. So please do not dis-
tribute DVI files with PostScript specials—send
either the TEX source code, expecting the recipient
to have XY-pic ©̈⌣, or send a (compressed) Post-

Script file.

PostScript header file With some DVI-drivers
it is more efficient to have the PostScript com-
mands that XY-ps needs loaded initially from a sepa-
rate “header” file. To use this facility the user has the
following commands available. . .

\UsePSheader {}

\UsePSheader {<filename>}

\dumpPSdict {<filename>}

\xyPSdefaultdict

The \UsePSheader command must be specified be-
fore \UsePSspecials{〈driver〉} is invoked. It allows
the name of the dictionary file to be specified as
the 〈filename〉. Normally it is sufficient to invoke
\UsePSheader{}, which will use the default dictionary
name of xy212dict.ps, referring to the current version
of XY-pic and XY-ps.

See the documentation for the specific driver to es-
tablish where the dictionary file should be located on
any particular TEX system. Usually it is sufficient to
have a copy in the current working directory. Invok-
ing the command \dumpPSdict{} will place a copy of
the requisite file, having the default name, in the cur-
rent directory. This file will be used as the dictionary
for the current processing, provided it is on the cor-
rect directory path, so that the driver can locate it
when needed. Consult your local system administrator
if you experience difficulties.

45

22.3 PostScript escape

An extra 〈shape〉 modifier key allows arbitrary Post-

Script code to be applied to the current 〈object〉.

[!〈postscript code〉] for special effects
[psxy] stores current location.

Normally the 〈postscript code〉 will be a simple com-
mand to alter the PostScript graphics state: e.g.
[!1 0 0 setrgbcolor] changes the colour used to
render parts of the 〈object〉. Any number of such
〈shape〉 modifiers is allowable, however it is more effi-
cient to combine them into a single modifier, whenever
possible.
It is very important that braces { and } do not ap-

pear explicitly in any 〈postscript code〉, as this may
upset the XY-pic 〈object〉 parsing. However it is accept-
able to have a control sequence name here, expanding
into more intricate PostScript code. This will not
be expanded until a later (safe) time.
Due to differences within the DVI-drivers, such sim-

ple PostScript commands need not affect every part
of an 〈object〉. In particular the lines, curves and ar-
rowheads generated by XY-pic use a different mech-
anism, which should give the same result with all
drivers. This involves redefining some PostScript

procedures which are always read prior to rendering
one of these objects. One simple way to specify a red
line is as follows; the xycolor extension provides more
sophisticated support for colour. The 〈shape〉modifiers
described in the previous section also use this mecha-
nism, so should work correctly with all drivers.

\def\colorxy(#1){%

/xycolor{#1 setrgbcolor}def}

...

\connect[!\colorxy(1 0 0)]\dir{-}

...

Note how the braces are inserted within the expansion
of the control sequence \colorxy, which happens after
parsing of the 〈connection〉. The following table shows
which graphics parameters are treated in this way, their
default settings, and the type of PostScript code
needed to change them.

colour /xycolor{0 setgray}def

line width /xywidth{.4 setlinewidth}def

dashing /xydash{[] 0 setdash}def

line-cap /xycap{1 setlinecap}def

line-join /xyjoin{1 setlinejoin}def

This feature is meant primarily for modifying the ren-
dering of objects specified in TEX and XY-pic, not for

drawing new objects within PostScript. No guar-
antee can be given of the current location, or scale,
which may be different with different drivers. However
a good PostScript programmer will be able to over-
come such difficulties and do much more. To aid in
this the special modifier [psxy] is provided to record
the location where the reference point of the current
〈object〉 will be placed. Its coordinates are stored with
keys xyXpos and xyYpos.

22.4 Extensions

Several included file handle standard extensions.

xyps-l.tex: This included file (version 2.9) provides
XY-ps support for the effects defined in the line

extension.

xyps-c.tex: This included file (version 2.9) provides
XY-ps support for the effects defined in the color

extension.

xyps-r.tex: This included file (version 2.9) provides
XY-ps support for the effects defined in the rotate
extension.

Answers to all exercises

Answer to exercise 1 (p.5): In the default setup
they are all denote the reference point of the XY-picture
but the cartesian coordinate 〈pos〉 (0,0) denotes the
point origo that may be changed to something else us-
ing the : operator.

Answer to exercise 2 (p.7): Use the 〈pos〉ition
<X,Y >+"ob".

Answer to exercise 3 (p.7): It first sets c according
to “. . . ”. Then it changes c to the point right of c at
the same distance from the right edge of c as its width,
w, i.e.,

The . . .
︸ ︷︷ ︸

w

×
︸ ︷︷ ︸

w

Answer to exercise 4 (p.8): The 〈coord〉
“{"A";"B": "C";"D", x}” returns the cross point.
Here is how the author typeset the diagram in the ex-
ercise:

\xy

%

% set up and mark A, B, C, and D:

(0,0)="A" *\cir<1pt>{}*+!DR{A},

(7,10)="B" *\cir<1pt>{}*+!DR{B},

(13,8)="C" *\cir<1pt>{}*+!DL{C},

46

(15,4)="D" *\cir<1pt>{}*+!DL{D},

%

% goto intersection and name+circle it:

{"A";"B":"C";"D",x} ="I" *\cir<3pt>{},

%

% make dotted lines:

"I";"A"**{} +/1pc/;-/1pc/ **\dir{..},

"I";"D"**{} +/1pc/;-/1pc/ **\dir{..}

%

\endxy

Answer to exercise 5 (p.8): To copy the p value
to c, i.e., equivalent to “p”.

Answer to exercise 6 (p.8): When using the kernel
connections that are all straight there is no difference,
e.g., **{}?< and **{}+E denote exactly the same posi-
tion. However, for other connections it is not necessar-
ily the case that the point where the connection enters
the current object, denoted by ?<, and the point where
the straight line from p enters the object, denoted by
+E, coincide.

Answer to exercise 7 (p.8): The code typesets the
picture

Box

•

Answer to exercise 8 (p.8): s0 contains D and s1

contains A.

Answer to exercise 9 (p.9): This does the job,
saving each point to make the previous point available
for the next piece:

\xy

@i @+(0,-10) @+(10,3) @+(20,-5),

s0="prev" @@{;"prev";**\dir{-}="prev"}

\endxy

Notice how we first save s0 because that will be the
last point that we run through thus the line is closed.

Answer to exercise 10 (p.9): The author used

\xy ={.{+DL(2)}.{+UR(2)}}"dbl",

+<3pc,2pc>{+}\frm{.}, "dbl"*\frm{--}

\endxy

to typeset the figure in the exercise.

Answer to exercise 11 (p.10): The first typesets
“a” centered around 0 and then moves c to the lower
right corner, the second typesets “a” above the 0 point
and does not change c. With a “+” at 0 they look like
this: +a and +a .

Answer to exercise 12 (p.10): They have the out-
lines

∑
+ and ∑

+

because the first is enlarged by the positive offset to
the upper right corner and the second by the negative
offset to the lower left corner.

Answer to exercise 13 (p.12): The first has no
effect since the direction is set to be that of a vector in
the current direction, however, the second reverses the
current direction.

Answer to exercise 14 (p.15): One way is

$$\xy

{+}; p+(6,3){+} **{} ?(1)

*\dir{-} *!/-5pt/^\dir{-}

*^\dir{-} *!/^-5pt/\dir{-}

\endxy$$

Thus we first create the two +s as p and c and con-
nect them with the dummy connection **{} to setup
the direction parameters. Then we move ‘on top of c’
with ?(1) and position the four sides of the square us-
ing ^ and _ for local direction changes and /〈dimen〉/
for skewing the resulting object by moving its reference
point in the opposite direction.

Answer to exercise 15 (p.15): One way is to add
extra half circles skewed such that they create the illu-
sion of a shade:

$$\xy

*\cir<5pt>{}

*!<-.2pt,.2pt>\cir<5pt>{dr^ul}

*!<-.4pt,.4pt>\cir<5pt>{dr^ul}

*!<-.6pt,.6pt>\cir<5pt>{dr^ul}

\endxy$$

Answer to exercise 16 (p.17): This is the code
that was actually used:

\xy (0,20)*[o]+{A};(60,0)*[o]+{B}="B"

**\crv{} \POS?(.4)*_+!UR{0},"B"

**\crv{(30,30)} \POS?*^+!D{1},"B"

**\crv{(20,40)&(40,40)} \POS?*^+!D{2},"B"

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

\POS?*+^!UR{4} \endxy

Answer to exercise 17 (p.17): This is the code
that was used to typeset the picture:

\xy (0,20)*+{A};(60,0)*+{B}

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

?<*\dir{<} ?>*\dir{>}

?(.65)*{\oplus} *!LD!/^-5pt/{x}

?(.65)/12pt/*{\oplus} *!LD!/^-5pt/{x’}

47

?(.28)*=0{\otimes}-/40pt/*+{Q}="q"

+/100pt/*+{P};"q" **\dir{-}

\endxy

Answer to exercise 18 (p.17): Here is the code
that was used to typeset the picture:

\def\ssz#1{\hbox{$_{^{#1}}$}}

\xy (0,0)*+{A};(30,-10)*+{B}="B",**\dir{-},

"B"**\crv{(5,20)&(20,25)&(35,20)}

?<(0)*\dir{<}="a" ?>(1)*\dir{>}="h"

?(.1)*\dir{<}="b" ?(.9)*\dir{>}="i"

?(.2)*\dir{<}="c" ?(.8)*\dir{>}="j"

?(.3)*\dir{<}="d" ?(.7)*\dir{>}="k"

?(.4)*\dir{<}="e" ?(.6)*\dir{>}="l"

?(.5)*\dir{|}="f",

"a"*!RC\txt{\ssz{(\lt)}};

"h"*!LC\txt{\ssz{\;(\gt)}},**\dir{.},

"b"*!RD{\ssz{.1}};

"i"*!L{\ssz{\;.9}},**\dir{-},

"c"*!RD{\ssz{.2}};

"j"*!L{\ssz{\;.8}},**\dir{-},

"d"*!RD{\ssz{.3}};

"k"*!L{\ssz{\;.7}},**\dir{-},

"e"*!RD{\ssz{.4}};

"l"*!LD{\ssz{.6}},**\dir{-},

"f"*!D!/^-3pt/{\ssz{.5}}

\endxy

Answer to exercise 19 (p.19): Here is how:

\xy

(0,0) *++={A} *\frm{o} ;

(10,7) *++={B} *\frm{o} **\frm{.}

\endxy

Answer to exercise 20 (p.19): The *\cir {} op-
eration changes c to be round whereas *\frm {o} does
not change c at all.

Answer to exercise 21 (p.19): Here is how:

\xy

(0,0) *+++{A} ;

(10,7) *+++{B} **\frm{.}

**\frm{^\}} ; **\frm{_\}}

\endxy

The trick in the last line is to ensure that the ref-
erence point of the merged object to be braced is the
right one in each case.

Answer to exercise 22 (p.23): This is how the
author specified the diagram:

\UseCrayolaColors

$$\xy\drop[*1.25]\xybox{\POS

(0,0)*{A};(100,40)*{B}**{}

?<<*[@_][red][o]=<5pt>{\heartsuit};

?>>>*[@_][Plum][o]=<3pt>{\clubsuit}

**[|*][|.5pt][thicker]\dir{-},

?(.1)*[left]!RD\txt{label 1}*[red]\frm{.}

?(.2)*[!gsave newpath

xyXpos xyYpos moveto 50 dup rlineto

20 setlinewidth 0 0 1 setrgbcolor stroke

grestore][psxy]{.},

?(.2)*[@]\txt{label 2}*[red]\frm{.},

?(.2)*[BurntOrange]{*},

?(.3)*[halfsize]\txt{label 3}*[red]\frm{.}

?(.375)*[flip]\txt{label 4}*[red]\frm{.}

?(.5)*[dblsize]\txt{label 5}*[red]\frm{.}

?(.5)*[WildStrawberry]{*},

?(.7)*[hflip]\txt{label 6}*[red]\frm{.}

?(.8)*[vflip]\txt{label 7}*[red]\frm{.}

?(.9)*[right]!LD\txt{label 8}*[red]\frm{.}

?(.5)*[@][*.66667]!/^30pt/

\txt{special effect: aligned text}

*[red]\frm{.}

}\endxy$$

Answer to exercise 23 (p.27): Here is what the
author did:

\xy *+{A}*\cir<10pt>{}="me"

\PATH ~={**{}} ~-{**dir{-}}

‘ul^ur,"me" "me" |>*:(1,-.15)\dir{>}

\endxy

The trick is getting the arrow head right: the : mod-
ifier to the explicit \dir 〈object〉 does that.

Answer to exercise 24 (p.27): The author did

\xy(0,0)

\ar @{-->} (30,7) ^A="a"

\POS(10,12)*+\txt{label} \ar "a"

\endxy

Answer to exercise 25 (p.28): Here is the entire
XY-picture of the exercise:

\xy ;<1pc,0pc>:

\POS(0,0)*+{A}

\ar +(-2,3)*+{A’}*\cir{}

\ar @2 +(0,3)*+{A’’}*\cir{}

\ar @3 +(2,3)*+{A’’’}*\cir{}

\POS(6,0)*+{B}

\ar @1{||.>>} +(-2,3)*+{B’}*\cir{}

\ar @2{||.>>} +(0,3)*+{B’’}*\cir{}

\ar @3{||.>>} +(2,3)*+{B’’’}*\cir{}

\endxy

The first batch use the default {->} specification.

Answer to exercise 26 (p.28): The author used

48

\newdir{ >}{{}*!/-5pt/\dir{>}}

Answer to exercise 27 (p.29): The author used

\xy

\ar @{>>*\composite{\dir{x}*\dir{+}}<<}

(20,7)

\endxy

Answer to exercise 28 (p.29): The author used

\xy*{\bullet}="b"

\ar

@’{@+(10,10) @+(0,20) @+(-10,10)}

"b"

\endxy

Answer to exercise 29 (p.31): Here is the code
used to typeset the pasting diagram in figure 14.

\xymatrixrowsep{1.5pc}

\xymatrixcolsep{3pc}

\diagram

&&\relax\rtwocell<0>^{f_3^{}\;\;}{\omit}

&\relax\ddtwocell<0>{\omit}

\drtwocell<0>^{\;\;f_4^{}}{<3>}

\ddrrtwocell<\omit>{<8>}\\

&&&&\relax\drtwocell<0>^{\;\;f_5^{}}{\omit}\\

A \uurrlowertwocell<-6>{\omit}\relax

\uurrcompositemap<2>_{f_1^{}}^{f_2^{}}{<.5>}

\drtwocell<0>_{g_1^{}\;}{\omit}

&&&\relax\urtwocell<0>{\omit}

&&\relax\rtwocell<0>^{f_6^{}\;}{\omit}

&\relax\rlowertwocell<-3>_{g_4^{}}{<-1>}

\rcompositemap<6>_{f_7^{}}^{f_8^{}}{\omit}

& B \\

&\relax\urrtwocell<0>{\omit}

\xcompositemap[-1,4]{}%

<-4.5>_{g_2^{}}^{g_3^{}}{\omit}\\

\enddiagram

For the straight arrows, it would have been simpler to
use \..to provided xyarrow has been loaded. Instead
\..twocell<0>...{\omit } was used to illustrate the
versatility of nudging and \omit ; thus xy2cell can
completely handle a wide range of diagrams, without
requiring xyarrow. Note also the use of \relax at the
start of each new cell, to avoid premature expansion of
a complicated macro, which can upset the compiling
mechanism.

Answer to exercise 30 (p.34): Here is the code
used by the author to set the first diagram.

{\uppercurveobject{{?}}

\lowercurveobject{{\circ}}

\xymatrixcolsep{5pc}

\xymatrixrowsep{2pc}

\diagram

\relax\txt{ FUn }\rtwocell<8>{!\&}

& \relax\txt{ gaMES }

\enddiagram}

Here is the code used for the second diagram.

\xymatrixcolsep{2.5pc}

\xymatrixrowsep{4pc}

\diagram

\relax\txt<1.5cm>{\bf Ground State}

\rrtwocell<12>~^{+{}~**!/-2.5pt/\dir{>}}

~_{++{}~**!/5pt/\dir{<<}}

^{<1.5>\txt{\small continuous power}}

_{<1.5>\txt{\small pulsed emission}}{!}

& \relax\;\; N\!i\,C\!d\;\; \Circled

& \relax\txt<1.50cm>{\bf Excited State}

\enddiagram

Answer to exercise 31 (p.36): A modifier was
used to make all entries round and all entries had an
extra circle added (these things are independent). Fi-
nally the matrix was rotated to make it possible to
enter it as a simple square:

\entrymodifiers={[o]=<1pc>}

\everyentry={\drop\cir{}}

\xy\xymatrix@ur{

A \save[];[r] **\dir{-},

[];[dr]**\dir{-},

[];[d] **\dir{-}\restore

& B \\

C & D }\endxy

Answer to exercise 32 (p.36): The author did

\xy\xymatrix{

*+!/r1em/{A\times B}

\ar[r]^{/A} \ar[d]_{/B}

& B \ar[d]^{\times A}

\\

A \ar[r]_{B\times}

& *+!/l1em/{B\times A}

}\endxy

Notice the use of a + modifier to ensure that the
entries are grown just as in the default case.

Answer to exercise 33 (p.36): Here is how:

\objectheight{1pc} \objectwidth{3pc}

\xymatrixrowsep={0pc}

\everyentry={\framed}

\xy\xymatrix{%

: \save+<-4pc,1pc>*\hbox{\it root}

\ar[]

\restore

\\

49

{\bullet}

\save*{}

\ar‘r[dd]+/r4pc/‘[dd][dd]

\restore

\\

{\bullet}

\save*{}

\ar‘r[d]+/r3pc/‘[d]+/d2pc/

‘[uu]+/l3pc/‘[uu][uu]

\restore

\\

1 }\endxy

Answer to exercise 34 (p.37): The first A was
named to allow reference from the last:

\xygraph{

[]A="A1" :@/^.5pc/ [r]A

:@/^.5pc/ [r]A

:@/^1pc/ "A1" }

Answer to exercise 35 (p.39): Here is the code
actually used to typeset the \xypolygon s, within an
\xygraph . It illustrates three different ways to place
the numbers. Other ways are also possible.

\def\objectstyle{\scriptscriptstyle}

\xy \xygraph{!{/r2pc/:}

[] !P3"A"{\bullet}

"A1"!{+U*++!D{1}} "A2"!{+LD*+!RU{2}}

"A3"!{+RD*+!LU{3}} "A0"

[rrr]*{0}*\cir<5pt>{}

!P6"B"{~<-\cir<5pt>{}}

"B1"1 "B2"2 "B3"3 "B4"4 "B5"5 "B6"6 "B0"

[rrr]0 !P9"C"{~*{\xypolynode}}}\endxy

References

[1] American Mathematical Society. AMS-LATEX
Version 1.1 User’s Guide, version 1.1 edition,
1991. Available for anonymous from CTAN in
macros/ams/amslatex/doc.

[2] Karl Berry. Expanded plain TEX, version 2.6 edi-
tion, May 1994. Available for anonymous from
CTAN in macros/eplain/doc.

[3] Michel Goossens, Frank Mittelbach, and Alexan-
der Samarin. The LATEX Companion. Addison-
Wesley, 1994.

[4] Brian W. Kernighan. PIC—a language for type-
setting graphics. Software Practice and Experi-

ence, 12(1):1–21, 1982.

[5] Donald E. Knuth. The TEXbook. Addison-Wesley,
1984.

[6] Donald E. Knuth. Computer Modern Typefaces,
volume A of Computers & Typesetting. Addison-
Wesley, 1986.

[7] Leslie Lamport. LATEX—A Document Preparation

System. Addison-Wesley, 1986.

[8] Leslie Lamport. LATEX—A Document Preparation

System. Addison-Wesley, 2nd edition, 1994.

[9] P. Naur et al. Report on the algorithmic language
ALGOL 60. Communications of the ACM, 3:299–
314, 1960.

[10] Tomas Rokicki. DVIPS: A TEX Driver. Dis-
tributed with the dvips program found on CTAN
archives.

[11] Kristoffer H. Rose. XY-pic complete sources with
TEXnical commentary. To appear.

[12] Kristoffer H. Rose. How to typeset pretty dia-
gram arrows with TEX—design decisions used in
XY-pic. In Jǐŕı Zlatuška, editor, EuroTEX ’92—

Proceedings of the 7th European TEX Conference,
pages 183–190, Prague, Czechoslovakia, Septem-
ber 1992. Czechoslovak TEX Users Group.

[13] Kristoffer H. Rose. Typesetting diagrams withXY-
pic: User’s manual. In Jǐŕı Zlatuška, editor, Eu-
roTEX ’92—Proceedings of the 7th European TEX

Conference, pages 273–292, Prague, Czechoslo-
vakia, September 1992. Czechoslovak TEX Users
Group.

[14] Kristoffer H. Rose. XY-pic user’s guide. Math-
ematics Report 94–148, MPCE, Macquarie Uni-
versity, NSW 2109, Australia, June 1994. For
version 2.10+. Latest version available by anony-
mous ftp in ftp.diku.dk: /diku/users/kris/

TeX/xyguide.ps.Z.

[15] Michael D. Spivak. The Joy of TEX—A Gourmet

Guide to Typesetting with the AMS-TEX Macro

Package. American Mathematical Society, second
edition, 1990.

50

